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Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.


http://www.mathworks.com/support/bugreports/
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Design Models for Rapid Prototyping Deployment

When using Simulink® Coder™ to generate code for rapid prototyping , it is important
to design your Simulink models with code generation in mind from the very beginning of
the design process. Think about relevant design factors and issues such as:

In this section...

“Application Algorithms and Run-Time Environments” on page 1-2
“Software Execution Framework for Generated Code” on page 1-3

“Map Embedded System Architecture to Simulink Modeling Environment” on page
1-5

“Model Templates for Code Generation” on page 1-12

Application Algorithms and Run-Time Environments

Use Simulink to design models that represent application algorithms and run-time
environments from which you intend to generate deployable code. Depending on your
application, you might deploy code to an execution environment that consists of a
combination of:

Execution Environment Choices
Components
Hardware +  Development computer

*  Rapid-prototyping board
*  Microprocessor

*  Microcontroller

+ FPGA

+ ASIC
Cores + Single

+  Multiple
Operating system *  General-purpose

+ Real-time

* None (bare metal)

Scheduling * Single-tasking

1-2
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Execution Environment Choices
Components

*  Multitasking

* Interrupt driven

+ Concurrency

*  Provided by operating system

*  Generated from model

Application algorithm code Generated from model

+  External code

As you design models to generate C or C++ code for rapid prototyping or production
deployment, keep in mind the execution environment. Generate code that meets
implementation requirements and avoids potential design rework. As the preceding table
reflects, the execution environment for code that you generate can range from relatively
simple to complex. For example, a simple case is code that you generate from a single,
single-tasking model that runs on a single-core microprocessor. A complex case is code
that generate from a model partitioned to run as a distributed system on a multicore
microprocessor and an FPGA.

Software Execution Framework for Generated Code

Part of an application execution environment is the software execution framework that is
responsible for scheduling and running the generated code. That software can preexist,
as in the case of an operating system and its scheduler, or you can code the software
manually. The level of complexity varies depending on which of the following modeling
and code generation scenarios applies:

*  Generate code from a single top model, which represents the algorithms intended to
run in the execution environment.

*  Generate code from a model, which represents part of an overall algorithm. You can
mix the generated code with code written manually and code generated from other

sources or releases of MathWorks® products.
Single Top Model

For a single top model, the software execution framework is responsible for running
generated code the same way that Simulink simulates the model. Functions in the
generated code are highly coordinated and optimized because Simulink is aware of
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dependencies. The framework interfaces with code generated for the top model only. Code
generated for a top model handles interfacing with code for referenced Model blocks.

Consider the following example, where a single top model is mapped to tasks that run on
a single-core CPU.

Model

F3

m
o

-

F4

/

Task

Scheduler

CPU

Execution
Environment

Task

ﬂ
N
I ]

For this system, you map model clock rates to tasks that run on the hardware. You can
choose for Simulink to map the rates implicitly or you can map them explicitly in your
model. You can model latency effects resulting from how you map rates in a model to
single-tasking or multitasking execution environments. Simulink schedules the tasks
properly based on rates in the model and data dependencies between tasks. The code
generator implements the same dependencies in the code that it generates. The software
execution framework invokes generated entry-point functions at rates based on system
timers and interrupts. The generated code executes in the same manner that Simulink
simulates the model, and contains code dedicated to communicating data between
functions running at different rates.

Multiple Top-Level Models

When you generate code from multiple top models separately and mix that code with
code acquired in other ways, the execution environment of the application takes on more
software execution framework responsibility. For this modeling scenario, you generate
code for standalone, atomic reusable components.

Model

Hand
Code

Hand
Code

Model Model

Execution
Environment
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With this scenario, Simulink is not aware of model dependencies. Functions in code
generated from the different models are minimally coordinated and optimized. For
example, the models might share generated utility functions. Potential optimizations
that cross model boundaries are not possible. You must design the software execution
framework taking into account dependencies between units of code, including execution
order. For an application that requires concurrent execution across multiple cores, you
must consider data latency effects across the cores.

The code generator helps you address software execution framework challenges, such as

sharing global data and avoiding identifier conflicts. The code generated for a each model
handles the interfacing for referenced Model blocks.

Map Embedded System Architecture to Simulink Modeling Environment

When designing models for rapid-prototyping deployment, think about these design
factors.

“Modeling Given initial state and input, a set of tasks or instructions that
Algorithms” on  |efficiently produce a correct result that you want.
page 1-6

“Modeling Mechanisms that enable algorithm components to communicate and
Interfaces” on exchange information across component boundaries.

page 1-6

“Modeling Collection of algorithm components that achieve a higher-level,

Systems” on page |domain-specific goal or result. Components often share resources.
1-8

“Modeling Framework that handles scheduling of system algorithm resources
Run-Time and execution.

Environments”

on page 1-10

Consider the following questions concerning modeling capabilities. Use the information
listed with the questions as a guide as you design models. Designing a model with a
specific run-time execution environment in mind can help you avoid rework and future
conversion and maintenance costs.

1-5



1 Modeling Environment for Simulink Coder

Modeling Algorithms

Architecture Considerations

Modeling Considerations

Related Information

What is the system domain?

Product prerequisites
(based on domains of
components)

“Supported Products and Block
Usage” on page 2-4 (Simulink
Coder)

“Simulink Control Design”
(Simulink Control Design™)

“Model Signal Processing
Systems” (Simulink)

“Signal Generation, Manipulation,
and Analysis”(DSP System
Toolbox™)

Does the system involve physical
domains, such as mechanical,
electrical, or hydraulic domains?

Physical systems

“Model Physical Systems”
(Simulink)

“Basic Principles of Modeling
Physical Networks” (Simscape™)

“Essential Physical Modeling
Techniques” (Simscape)

What aspects of your algorithm
can you represent with blocks
provided by MathWorks products?
What blocks do you need to create?

Block usage, creation,
and customization

“Supported Products and Block
Usage” on page 2-4 (Simulink
Coder)

“External Code Integration”
(Simulink Coder)

Does the architecture include state
machine components?

Event-driven system

“Basic Approach for Modeling Event-

Driven Systems” (Stateflow™)

Modeling Interfaces

Architecture Considerations

Modeling Considerations

Related Information

*  What data must you represent
in the generated code?

* How do you need to represent
input and output—data type,
dimension, complexity?

How will the data change?

Data representation

“Interface Design” (Simulink)

“Data Representation”
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Architecture Considerations

Modeling Considerations

Related Information

Where and how is data pulled into |Input * “Comparison of Signal Loading
the system and pulled within the Techniques” (Simulink)
system?

+ Where and how is data pushed |Output + “Inspect Signal Data with

within the system and out of
the system?

What external triggers are
necessary?

Simulation Data Inspector”
(Simulink)

“Control Data Representation by
Applying Custom Storage Classes”

*  What functions do you need to
define for each component?

+  What is the prototype for each
entry-point function?

Functions and function
calls

“Function and Class Interfaces”

Do you need to export functions
that are invoked by controlling
logic that is outside the model?

Function export

“Export-Function Models”
(Simulink)

“Export Generated Algorithm
Code for Embedded Applications”
on page 24-18

Does the system monitor signals
or log data (for example, for
calibration)?

C API and ASAP2 data
exchange interfaces

“Exchange Data Between
Generated and External Code
Using C API” on page 28-2
(Simulink Coder)

“Export ASAP2 File for Data
Measurement and Calibration” on
page 29-2 (Simulink Coder)

Do you need to replace code
generated for functions or
operators, for example, to optimize
the code for specific hardware?

Code replacement

“What Is Code Replacement?” on
page 21-2 (Simulink Coder)

“What Is Code Replacement
Customization?”

Is there a requirement
for elaboration and future
considerations?

Elaboration and future
considerations

“Interface Design” (Simulink)

1-7
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Modeling Systems

Architecture Considerations

Modeling Considerations

Related Information

What is the scope of the
system? Controller? External
environment or plant? Test
harness?

*  How is the system partitioned
into algorithm components
(chunks of logic)?

*  Which components can you
represent in Simulink?

Can you design components for
reuse? What is the motivation
for reuse (for example, division
of labor or plug-n-play)?

Componentization

“Interface Design” (Simulink)

“Componentization Guidelines”
(Simulink)

“Design Partitioning” (Simulink)
“Custom Libraries and Linked
Blocks” (Simulink)

“Custom MATLAB Algorithms”
(Simulink)

“Code Generation of Subsystems”
on page 6-2

“Code Generation of Referenced
Models” on page 8-2

“Code Generation of Stateflow
Blocks” on page 13-2
(Simulink Coder)

* Do aspects of the system
require unit testing?

Is a team of people
collaborating on the project?

* Do you need to protect
intellectual property?

Model referencing

“Overview of Model Referencing”
(Simulink)

“Componentization Guidelines”
(Simulink)

“Code Generation of Referenced
Models” on page 8-2

“Generate Reusable Code for Unit
Testing” on page 13-8

Are you modeling a client-server
architecture?

Simulink Function and
Caller blocks

“Diagnostics Using a Client-
Server Architecture” (Simulink)

“Simulink Functions” (Simulink)

Is relevant legacy or custom code
available?

External code
integration

“About External Code Integration” on
page 24-2

Can you apply a reference
architecture or reference
components?

1-8
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Architecture Considerations

Modeling Considerations

Related Information

+ “Create a New Project Using
Templates” (Simulink)

Can you reuse functions?

Function reuse

+ “Code Reuse For Subsystems
Shared Across Models” on page
6-20 (Simulink Coder)

+  “Reusable Library Subsystem” on
page 6-21 (Simulink Coder)

+ “Generate Reentrant Code from
Top-Level Models” on page
15-4 (Simulink Coder)

+ “Reusable Code and Referenced
Models” on page 8-28
(Simulink Coder)

*  “Generate Reusable Code for
Atomic Subcharts” on page
13-6 (Simulink Coder)

1-9
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Architecture Considerations

Modeling Considerations

Related Information

* Do components need to share
access to global data?

Within the system, do state
changes occur? In each case,
how does the result get
communicated?

Are there identifier (naming)
issues to consider?

Shared data

+ “Local and Global Data Stores”
(Simulink)

+  “Default Data Structures in
the Generated Code” on page
14-16

(Simulink Coder)

+ “Storage Classes for Signals
Used with Model Blocks” on page
8-22 (Simulink Coder)

+ “Shared Constant Parameters
for Code Reuse” on page 6-24
(Simulink Coder)

+ “Data Stores in Generated Code”
on page 14-31 (Simulink
Coder)

+  “Create Data Objects for Code

Generation with Data Object
Wizard”

+  “Place Global Data Declarations
and Definitions in Separate Files’

+  “Customize Generated Identifier
Naming Rules”

i

Modeling Run-Time Environments

Architecture Considerations

Modeling Considerations

Related Information

+  What level of control over run-

time interfacing does your
application require?

+  How much of your system can
you represent in a model?

Runtime interfacing

+ “Execution of Code Generated
from a Model” on page 15-9

+  See Modeling Interfaces.

Is the system partitioned into
concurrent components to

1-10
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Design Models for Rapid Prototyping Deployment

Architecture Considerations

Modeling Considerations

Related Information

maximize parallelism? Which
components?

Are components driven by an
external clock?

*  What clock rates do system
components use?

* Do components use a single
rate or multiple rates?

Clocks and clock rates

“Interface Design” (Simulink)

Are components in the system
driven by clocks?

+  What clock rates do system
components use?

* Do components use a single
rate or multiple rates?

What are the priorities of
system tasks and functions?

Time-based scheduling

“Absolute and Elapsed Time
Computation” on page 3-2

“Time-Based Scheduling”

* Are components in the system
driven by events (interrupts)?

*  What are the priorities of
system tasks and functions?

Event-based scheduling

“Absolute and Elapsed Time
Computation” on page 3-2

“Event-Based Scheduling”

“Basic Approach for Modeling
Event-Driven Systems”
(Stateflow)

Does the system need to handle
initialization, reset, or terminate
events?

Initialization, reset,
termination

“Create a Model to Initialize and
Terminate State” (Simulink)

“Generate Code That Responds to
Initialize, Reset, and Terminate
Events” on page 12-2

1-11
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Architecture Considerations

Modeling Considerations

Related Information

+ Is the system a single-tasking
or multitasking system?

Are components required to
execute in real time?

What are the execution order
dependencies (sequencing)
between components?

+  What are the time constraints
for task and function
execution?

Task execution

+  “Execution of Code Generated
from a Model” on page 15-9

+ “Modeling for Single-Tasking
Execution” on page 4-8

+  “Modeling for Multitasking
Execution” on page 4-12

+ If you know the processing
platform, what is it?

Will the system run on a
single-core or multicore
processor?

+ Is the system a distributed
system?

+ Is the processing platform
hybrid or heterogeneous?

Does the architecture

employ symmetric or
asymmetric multiprocessing?
If asymmetric, how is the
platform software partitioned
across CPUs?

Processing platforms

“Multicore Processor Targets”
(Simulink)

Model Templates for Code Generation

The code generator provides a set of built-in templates to use as a starting point to create

models for common application designs. Use the templates to create models that are
preconfigured to generate code for rapid-prototyping or embedded system applications.

Template Description

System

Code Generation |Basic model consisting of an Inport block and Output block.

1-12
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Template Description

Exported Model for generating code from function-call subsystems. You can

functions export each function-call subsystem separately by right-clicking a
subsystem, selecting C/C++ Code > Export Functions, and clicking
Build.

Fixed-step, Fixed-step model that uses multiple rates and consists of Inport

multirate blocks, an Outport block, and a Sum block. The model is configured

to use a fixed-step discrete solver and to use two rates with Periodic
sample time constraint set to Unconstrained and the Treat
each discrete rate as a separate task option selected. Simulink
inserts a Rate Transition block to handle the two sample rates.

Fixed-step, single
rate

Fixed-step model that uses a single rate and consists of Inport blocks,
an Outport block, and a Sum block. The model is configured to use a
fixed-step discrete solver.

To create a model from a template:

B WN —

On the MATLAB® home tab, click Simulink.
In the Simulink start page, expand Embedded Coder.
Select a template.

Click Create. A new model that uses the template contents and settings appears in

the Simulink Editor window.

For more information, for example to create and use a template as a reference design, see
“Create a Template from a Model”.

Related Examples
. “Supported Products and Block Usage” on page 2-4

. “Modeling Semantic Considerations” on page 2-28

1-13
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* “Configure a Model for Code Generation” on page 2-2

* “Supported Products and Block Usage” on page 2-4

* “Modeling Semantic Considerations” on page 2-28

* “Modeling Guidelines for Blocks” on page 2-36

+ “Modeling Guidelines for Subsystems” on page 2-37

* “Modeling Guidelines for Charts” on page 2-39

* “Modeling Guidelines for MATLAB Functions” on page 2-41
* “Modeling Guidelines for Model Configuration” on page 2-42
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Configure a Model for Code Generation

Model configuration parameters determine the method for generating the code and the
resulting format.

1  Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

Note: This model uses Stateflow software.

2 Open the Configuration Parameters dialog box Solver pane. To generate code for a
model, you must configure the model to use a fixed-step solver. For this example, set
the parameters as noted in the following table.

Parameter Setting Effect on Generated Code

Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code
generation

Solver discrete (no Applies a fixed-step
continuous states) integration technique
for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of all rates in the
system

Solver options

Type: |Fixed-step - | Solver: |discrete {no continuous states) -

Fixed-step size (fundamental sample time): 001

3 Open the Code Generation pane and make sure that System target file is set to
grt.tlc.

2-2
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Note: The GRT (Generic Real-Time Target) configuration requires a fixed-step
solver. However, the rsim.tlc system target file supports variable step code
generation.

The system target file (STF) defines a target, which is an environment for generating
and building code for execution on a certain hardware or operating system platform.
For example, one property of a target is code format. The grt configuration requires a
fixed step solver and the rsim.tlc supports variable step code generation.

Open the Code Generation > Custom Code pane, and under Include list of
additional, select Include directories. In the Include directories text field,
enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for the model.

Apply your changes and close the dialog box.
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Supported Products and Block Usage

In this section...

“Related Products” on page 2-4

“Simulink Built-In Blocks That Support Code Generation” on page 2-6
“Simulink Block Data Type Support Table” on page 2-27
“Block Set Support for Code Generation” on page 2-27

Related Products

The following table summarizes MathWorks products that extend and complement
Simulink Coder software. For information about these and other MathWorks products,

see www . mathworks.com.

Product

Extends Code Generation Capabilities for ...

Aerospace Blockset™

Aircraft, spacecraft, rocket, propulsion systems,
and unmanned airborne vehicles

Communications System Toolbox™

Physical layer of communication systems

Audio System Toolbox™

Audio processing systems

Computer Vision System Toolbox™

Video processing, image processing, and
computer vision systems

Control System Toolbox™

Linear control systems

DSP System Toolbox

Signal processing systems

Embedded Coder®

Embedded systems, on-target rapid prototyping
boards, microprocessors in mass production, and
real-time simulators

Fixed-Point Designer™

Fixed-point systems

Fuzzy Logic Toolbox™

System designs based on fuzzy logic

Model-Based Calibration Toolbox™

Developing processes for systematically
identifying optimal balance of engine
performance, emissions, and fuel economy,
and reusing statistical models for control
design, hardware-in-the-loop (HIL) testing, or
powertrain simulation

2-4
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Supported Products and Block Usage

Product

Extends Code Generation Capabilities for ...

Model Predictive Control Toolbox™

Controllers that optimize performance of multi-
input and multi-output systems that are subject
to input and output constraints

Neural Network Toolbox™

Neural networks

Phased Array System Toolbox™

Sensor array systems in radar, sonar, wireless
communications, and medical imaging
applications

Simulink Desktop Real-Time™

Rapid prototyping or hardware-in-the-loop
(HIL) simulation of control system and signal
processing algorithms

Simscape Driveline™

Driveline (drivetrain) systems

Simscape Electronics™

Electronic and electromechanical systems

Simscape Fluids™

Hydraulic power and control systems

Simscape Multibody™

Three-dimensional mechanical systems

Simscape Power Systems™

Systems that generate, transmit, distribute, and
consume electrical power

Simscape

Systems spanning mechanical, electrical,
hydraulic, and other physical domains as
physical networks

Simulink 3D Animation™

Systems with 3D visualizations

Simulink Design Optimization™

Systems requiring maximum overall system
performance

Simulink Real-Time™

Rapid control prototyping, hardware-in-the-loop
(HIL) simulation, and other real-time testing
applications

Simulink Report Generator™

Automatically generating project documentation
in a standard format

Simulink Verification and Validation™

Applications requiring automated requirements
tracing, model standards compliance checking,
and test harness generation

Stateflow

State machines and flow charts
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Product

Extends Code Generation Capabilities for ...

System Identification Toolbox™ Systems constructed from measured input-

output data

Support exceptions:
* Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

* Nonlinear ARX models that contain custom
regressors

* neuralnet nonlinearities

+ customnet nonlinearities

Vehicle Network Toolbox™ CAN blocks for Accelerator and Rapid

Accelerator simulations and code deployment on

Windows®

Simulink Built-In Blocks That Support Code Generation

The following tables summarize code generator support for Simulink blocks. There is a
table for each block library. For more detail, including data types each block supports, in
the MATLAB Command Window, type showblockdatatypetable, or consult the block
reference pages. For some blocks, the generated code might rely on memcpy or memset
(string.h).

2-6
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Additional Math and Discrete: Increment/Decrement
Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

Model-Wide Utilities

Ports & Subsystems
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Signal Attributes
Signal Routing
Sinks

Sources
User-Defined

2-7
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Additional Math and Discrete: Additional Discrete

Block

Support Notes

Fixed-Point State-Space

The code generator does not explicitly group
primitive blocks that constitute a nonatomic
masked subsystem block in the generated code.
This flexibility allows for more efficient code
generation. In certain cases, you can achieve
grouping by configuring the masked subsystem
block to execute as an atomic unit by selecting the
Treat as atomic unit option.

Transfer Fcn Direct Form 11

Varying

Transfer Fcn Direct Form 11 Time

Unit Delay

Enabled (Obsolete)

Unit Delay
(Obsolete)

Enabled External IC

Unit Delay
(Obsolete)

Enabled Resettable

Unit Delay

Enabled Resettable

External IC (Obsolete)

Unit Delay

External IC (Obsolete)

Unit Delay

Resettable (Obsolete)

Unit Delay
(Obsolete)

Resettable External IC

Unit Delay
(Obsolete)

With Preview Enabled

Unit Delay
Resettable

With Preview Enabled
(Obsolete)

Unit Delay
Resettable

With Preview Enabled
External RV (Obsolete)

Unit Delay
(Obsolete)

With Preview Resettable

2-8

The code generator does not explicitly group
primitive blocks that constitute a nonatomic
masked subsystem block in the generated code.
This flexibility allows for more efficient code
generation. In certain cases, you can achieve
grouping by configuring the masked subsystem
block to execute as an atomic unit by selecting the
Treat as atomic unit option.
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Unit Delay With Preview Resettable
External RV (Obsolete)

2-9
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Additional Math and Discrete: Increment/Decrement

Integrator Limited

PID Controller

PID Controller (2DOF)

Second-Order Integrator

Second-Order Integrator
Limited

State-Space

Transfer Fcn

Transport Delay

Variable Time Delay

Variable Transport
Delay

2-10

Block Support Notes
Decrement Real World The code generator does not explicitly group primitive blocks that
Tee e Sl constitute a nonatomic masked subsystem block in the generated
Integer code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.
Decrement Time To Zero |Supports code generation.
Decrement To Zero The code generator does not explicitly group primitive blocks that
e — T constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
Increment Stored certain cases, you can achieve grouping by configuring the masked
Integer subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.
Continuous
Block Support Notes
Derivative Not recommended for production-quality code. Relates to resource
Integrator limits and restrictions on speed and memory often found in

embedded systems. The code generated can contain dynamic
allocation and freeing of memory, recursion, additional memory
overhead, and widely-varying execution times. While the code

is functionally valid and generally acceptable in resource-rich
environments, smaller embedded targets often cannot support such
code.

In general, consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support production
code generation. To start the Model Discretizer, select Analysis

> Control Design > Model Discretizer. One exception is the
Second-Order Integrator block because, for this block, the Model
Discretizer produces an approximate discretization.
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Block Support Notes

Zero-Pole

Discontinuities

Block Support Notes

Backlash Supports code generation.

Coulomb and Viscous
Friction

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Dead Zone

Supports code generation.

Dead Zone Dynamic

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Hit Crossing

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Quantizer

Supports code generation.

Rate Limiter

Cannot use inside a triggered subsystem hierarchy.

Rate Limiter Dynamic

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

2-11



2 Modeling in Simulink Coder

Block Support Notes
Relay Support code generation.
Saturation

Saturation Dynamic

Wrap To Zero

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Discrete

Block Support Notes

Delay Supports code generation.

Difference * The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.

In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

*  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Discrete Derivative

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

*  Supports code generation.

Discrete Filter

Discrete FIR Filter

Support code generation.

PID Controller

PID Controller (2DOF)
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Supported Products and Block Usage

Block

Support Notes

+  Support code generation.

Discrete State-Space

Discrete Transfer Fcn

Discrete Zero-Pole

Support code generation.

Discrete-Time
Integrator

Depends on absolute time when used inside a triggered subsystem
hierarchy.

Enabled Delay

Supports code generation.

First-Order Hold

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Memory

Resettable Delay

Tapped Delay

Support code generation.

Transfer Fcn First
Order

Transfer Fcn Lead or
Lag

Transfer Fcn Real Zero

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Unit Delay

Variable Integer Delay

Zero-Order Hold

Support code generation.

Logic and Bit Operations

Block

Support Notes

Bit Clear

Support code generation.
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Block

Support Notes

Bit Set

Bitwise Operator

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change

Detect Decrease

Detect Fall Negative

Detect Fall
Nonpositive

Detect Increase

Detect Rise
Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Lookup Tables

Block

Support Notes

Cosine

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit check box.
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Block

Support Notes

Direct Lookup Table
(n-D)

Interpolation Using
Prelookup

1-D Lookup Table

2-D Lookup Table

n-D Lookup Table

Lookup Table Dynamic

Support code generation.

Prelookup

Sine The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Math Operations

Block Support Notes

Abs Support code generation.

Add

Algebraic Constraint

Ignored during code generation.

Assignment

Bias

Complex to Magnitude-
Angle

Complex to Real-Imag

Divide

Dot Product

Find Nonzero Elements

Gain

Support code generation.
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Block

Support Notes

Magnitude-Angle to
Complex

Math Function (10"u)

Math Function (conj)

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (logl0)

Math Function
(magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (transpose)

Matrix Concatenate

MinMax

MinMax Running
Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reciprocal Sqrt

Reshape
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Block

Support Notes

Rounding Function

Sign

Signed Sqrt

Sine Wave Function

*  Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Slider Gain

Sqgrt

Squeeze

Subtract

Sum

Sum of Elements

Support code generation.

Trigonometric Function

Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support those
functions, the software issues a warning for the block and the
generated code fails to link.

Unary Minus

Vector Concatenate

Math

Weighted Sample Time

Support code generation.

Model Verification

Block

Support Notes

Assertion

Supports code generation.

Check Discrete
Gradient

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
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Block Support Notes
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Check Dynamic Gap Support code generation.

Check Dynamic Lower

Bound

Check Dynamic Range

Check Dynamic Upper

Bound

Check Input Resolution |Not recommended for production code. Relates to resource limits and

Check Static Gap restrictions on speed and memory often found in embedded systems.

- Generated code can contain dynamic allocation and freeing of

Check Static Lower memory, recursion, additional memory overhead, and widely-varying

Bound execution times. While the code is functionally valid and generally

Check Static Range acceptable in resource-rich environments, smaller embedded targets

Check Static U often cannot support such code. Usually, blocks evolve toward being

BOE;: d atrc Upper suitable for production code. Thus, blocks suitable for production

code remain suitable.

Model-Wide Utilities

Block

Support Notes

Block Support Table

Ignored during code generation.

DocBlock

Uses the template symbol you specify for the Embedded Coder
Flag block parameter to add comments to generated code. Requires
an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment”.

Model Info

Timed-Based
Linearization

Trigger-Based
Linearization

Ignored during code generation.

Ports & Subsystems
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Block

Support Notes

Atomic Subsystem

CodeReuse Subsystem

Configurable Subsystem

Enable

Enabled Subsystem

Enabled and Triggered
Subsystem

For Each Subsystem

For Ilterator Subsystem

Function-Call Feedback
Latch

Function-Call
Generator

Function-Call Split

Function-Call
Subsystem

It

IT Action Subsystem

Inport (Inl)

Model

Model Variants

Outport (Outl)

Resettable Subsystem

Subsystem

Switch Case

Switch Case Action
Subsystem

Trigger

Triggered Subsystem

Support code generation.
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Block

Support Notes

Unit System
Configuration

Variant Subsystem

While lterator
Subsystem

Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion
Inherited

Data Type Duplicate

Data Type Propagation

Data Type Scaling
Strip

Support code generation.

IC

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Probe

Supports code generation.

Rate Transition

*  Supports code generation.

+ Cannot use inside a triggered subsystem hierarchy.

Signal Conversion

Signal Specification

Unit Conversion
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Block Support Notes
Weighted Sample Time

width

Signal Routing

Block Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Support code generation.

Environment Controller

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From

Goto

Goto Tag Visibility

Index Vector

Support code generation.

Manual Switch

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
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Block Support Notes
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Merge When multiple signals connected to a Merge block have a non-Auto

storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch

Mux

Selector

Switch

Variant Sink

Variant Source

Vector Concatenate

Support code generation.

Floating Scope

Sinks
Block Support Notes
Display Ignored for code generation.

Outport (Outl)

Supports code generation.

Scope

Ignored for code generation.

Stop Simulation

+  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

*  Generated code stops executing when the stop condition is true.

Terminator

Supports code generation.
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Block

Support Notes

To File

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

To Workspace

XY Graph

Ignored for code generation.

Sources

Block

Support Notes

Band-Limited White
Noise

Cannot use inside a triggered subsystem hierarchy.

Chirp Signal

Clock

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Constant

Supports code generation.

Counter Free-Running

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.
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Block

Support Notes

Counter Limited

*  The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.

In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

+  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Digital Clock

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Enumerated Constant

Supports code generation.

From File

From Spreadsheet

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From Workspace

Ignored for code generation.

Ground
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Block

Support Notes

Inport (Inl)

Pulse Generator

Cannot use inside a triggered subsystem hierarchy. Does not refer to
absolute time when configured for sample-based operation. Depends
on absolute time when in time-based operation.

Ramp

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Random Number

Supports code generation.

Repeating Sequence

*  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

* Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

Repeating Sequence
Interpolated

*  The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.

In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

+ Cannot use inside a triggered subsystem hierarchy.

Repeating Sequence
Stair

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
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Block

Support Notes

certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Signal Builder

Signal Generator

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Sine Wave * Depends on absolute time when used inside a triggered
subsystem hierarchy.

* Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

Step Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Uniform Random Number

Supports code generation.

Waveform Generator

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.
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User-Defined

Block

Support Notes

Fcn

Function Caller

Support code generation.

Interpreted MATLAB
Function

Consider using the MATLAB Function block instead.

Level-2 MATLAB S-
Function

Ignored during code generation.

MATLAB Function

MATLAB System

Support code generation.

S-Function

S-Function Builder

S-functions that call into MATLAB are not supported for code

generation.

Simulink Function

Supports code generation.

Simulink Block Data Type Support Table

The Simulink Block Data Type Support table summarizes characteristics of blocks in the
Simulink and Fixed-Point Designer block libraries, including whether or not they are
recommended for use in production code generation. To view this table, in the MATLAB
Command Window, type showblockdatatypetable, or consult the block reference

pages.

Block Set Support for Code Generation

Several products that include blocks are available for you to consider for code generation.
However, before using the blocks for one of these products, consult the documentation for
that product to confirm which blocks support code generation.
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Modeling Semantic Considerations
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In this section...

“Data Propagation” on page 2-28

“Sample Time Propagation” on page 2-30
“Latches for Subsystem Blocks” on page 2-31
“Block Execution Order” on page 2-31

“Algebraic Loops” on page 2-33

Data Propagation

The first stage of code generation is compilation of the block diagram. This stage is
analogous to that of a C or C++ program. The compiler carries out type checking and
preprocessing. Similarly, the Simulink engine verifies that input/output data types of
block ports are consistent, line widths between blocks are of expected thickness, and the
sample times of connecting blocks are consistent.

The Simulink engine propagates data from one block to the next along signal lines. The
data propagated consists of

+ Data type
*  Line widths

+  Sample times

You can verify what data types a Simulink block supports by typing
showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command above.

The Simulink engine typically derives signal attributes from a source block. For example,
the Inport block's parameters dialog box specifies the signal attributes for the block.
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E! Source Block Parameters: Inl x|

—Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, ‘Latch input by delaying outside signal
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs’ prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

Main Signal Attributes I
Minimum: Maxdmum:

I [0

Data type: I double LI = |

™ Lock output data type setting against changes by the fixed-point tools

Port dimensions (-1 for inherited):

|3

Variable-size signal: IInherit ;I

Sample time {-1 for inherited):

jo.o1
Signal type: Icomplex ;I
Sampling mode: Iaub: |

J- [0]4 I Cancel | Help

In this example, the Inport block has a port width of 3, a sample time of .01 seconds, the

data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the Inport

block through a simple block diagram.

double (S (30 5 double (2103

Q)
(111 .
Gain

St

In this example, the Gain and Outport blocks inherit the attributes specified for the

Inport block.
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Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can sometimes lead
to unexpected and unintended sample time assignments. Since a block may specify an
inherited sample time, information available at the outset is often insufficient to compile
a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample times to
those blocks that have inherited sample times but that have not yet been assigned a
sample time. Thus, the engine continues to fill in the blanks (the unknown sample times)
until sample times have been assigned to as many blocks as possible. Blocks that still do
not have a sample time are assigned a default sample time.

For a completely deterministic model (one where no sample times are set using the
above rules), you should explicitly specify the sample times of your source blocks. Source
blocks include root inport blocks and blocks without input ports. You do not have to set
subsystem input port sample times. You might want to do so, however, when creating
modular systems.

An unconnected input implicitly connects to ground. For ground blocks and ground
connections, the sample time is always constant (inf).

All blocks have an inherited sample time (T = -1). They are assigned a sample time of (T
- T})/50.

Blocks Whose Outputs Have Constant Values

When you display sample time colors, by default, Constant blocks appear magenta

in color to indicate that the block outputs have constant values during simulation.
Downstream blocks whose output values are also constant during simulation, such as
Gain blocks, similarly appear magenta if they use an inherited sample time. The code
generated for these blocks depends in part on the tunability of the block parameters.

If you set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Inlined, the block parameters are not tunable in the
generated code. Because the block outputs are constant, the code generator eliminates
the block code due to constant folding. If the code generator cannot fold the code, or

if you select settings to disable constant folding, the block code appears in the model
initialization function. The generated code is more efficient because it does not compute
the outputs of these blocks during execution.
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However, if you configure a block or model so that the block parameters appear in
the generated code as tunable variables, the code generator represents the blocks in a
different way. Block parameters are tunable if, for example:

* You set Default parameter behavior to Tunable. By default, numeric block
parameters appear as tunable fields of a global parameter structure.

* You use a tunable parameter, such as a Simul ink.Parameter object that uses a
storage class other than Auto, as the value of one or more numeric block parameters.
These block parameters are tunable regardless of the setting that you choose for
Default parameter behavior.

If a block parameter is tunable, the generated code must compute the block outputs
during execution. Therefore, the block code appears in the model step function. If the
model uses multiple discrete rates, the block code appears in the output function for the
fastest downstream rate that uses the block outputs.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call subsystem, you
can use latch options to preserve input values while the subsystem executes. The Inport
block latch options include:

For Use

Triggered subsystems Latch input by delaying outside signal

Function-call Latch input for feedback signals of function-call
subsystems subsystem outputs

When you use Latch input for feedback signals of function-call subsystem
outputs for a function-call subsystem, the code generator

* Preserves latches in generated code regardless of optimizations that might be set

+ Places the code for latches at the start of a subsystem's output/update function

For more information on these options, see the description of the Inport block in the
Simulink documentation.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model . rtw file
(analogous to an object file generated from a C or C++ file). The model . rtw file contains
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the connection information of the model, as well as the signal attributes. Thus, the
timing engine in can determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in handwritten code)
in a model. For example, in the next figure the disconnected_trigger model on the
left has its trigger port connected to ground, which can lead to the blocks inheriting a
constant sample time. Calling the trigger function, (), directly from user code does not
work. Instead, you should use a function-call generator to specify the rate at which F()
should be executed, as shown in the connected_trigger model on the right.

3 fO
Y o - Connected
: Disconnected Function-call Trigger
: Trigger Generator
v v
fo f0
CDO—>{in1  outt——CD CDO—>|in1  outt——CD
In1 Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem

Instead of the function-call generator, you could use another block that can drive the
trigger port. Then, you should call the model's main entry point to execute the trigger
function.

For multirate models, a common use of the code generator is to generate code for
individual models separately and then manually code the I/O between the generated
code modules. This approach places the burden of data consistency between models

on the developer of the models. Another approach is to let Simulink and the code
generator maintain data consistency between rates and generate multirate code for use
in a multitasking environment. The Rate Transition block is able to interface periodic
and asynchronous signals. For a description of the Simulink Coder block libraries,

see “Asynchronous Events” on page 5-2. For more information on multirate code
generation, see “Modeling for Multitasking Execution” on page 4-12.
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Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents the
straightforward direct computation of their values. For example, in the case of a system
of equations

c X=y +2

. y = =X

the values of X and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for X and y (in an intelligent
manner, for example, using gradient based search) or “solve” the system of equations. In
the previous example, solving the system into an explicit form leads to

c 2X = 2
-y = -x
- x=1
-y =-1

An algebraic loop exists whenever the output of a block having direct feedthrough (such
as Gain, Sum, Product, and Transfer Fcn) is fed back as an input to the same block. The
Simulink engine is often able to solve models that contain algebraic loops, such as the
next diagram.

"\
Sine \Wave
. : — (D
o ot 1
Constant g

The code generator does not produce code that solves algebraic loops. This restriction
includes models that use Algebraic Constraint blocks in feedback paths. However, the
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Simulink engine can often eliminate algebraic loops that arise, by grouping equations
in certain ways in models that contain them. It does this by separating the update and
output functions to avoid circular dependencies. See “Algebraic Loops” in the Simulink
documentation for details.

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic and enabled
subsystems, a special consideration applies to some triggered subsystems. An example
for which code can be generated is shown in the following model and triggered
subsystem.

1 > |:|
-
Fuke
Generator Soope
r
Y
1 —m Ini Ot 1 1 ]
3 Ot
Constant Triggered
Subsystemn

The default Simulink behavior is to combine output and update methods for the
subsystem, which creates an apparent algebraic loop, even though the Unit Delay block
in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the output and
update methods of triggered and enabled-triggered subsystems when feasible. If

you want the code generator to take advantage of this feature, select the Minimize
algebraic loop occurrences check box in the Subsystem Parameters dialog box. Select
this option to avoid algebraic loop warnings in triggered subsystems involved in loops.

Note: If you check this box, the generated code for the subsystem might contain split
output and update methods, even if the subsystem is not actually involved in a loop.
Also, if a direct feedthrough block (such as a Gain block) is connected to the inport in the
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above triggered subsystem, the Simulink engine cannot solve the problem, and the code
generator is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the Model
Referencing pane of the Configuration Parameters dialog box. Selecting it enables the
Simulink Coder software to generate code for models containing Model blocks that are
involved in algebraic loops.
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Modeling Guidelines for Blocks

2-36

Code generation modeling guidelines include recommended model settings, block
usage, and block parameters. When you develop models for code generation, use these

guidelines.

For more information, see “Modeling Guidelines” in the Simulink documentation.

Code “cgsl_0101: Zero-based indexing”
Generation
Modeling “cgsl_0102: Evenly spaced breakpoints in lookup tables”
Guidelines )
“cgsl_0103: Precalculated signals and parameters”
“cgsl_0104: Modeling global shared memory using data stores”
“cgsl_0105: Modeling local shared memory using data stores”
“cgsl_0201: Redundant Unit Delay and Memory blocks”
See Also

“Modeling Guidelines for Subsystems” on page 2-37 | “Modeling Guidelines for
Charts” on page 2-39 | “Modeling Guidelines for MATLAB Functions” on page
2-41 | “Modeling Guidelines for Model Configuration” on page 2-42
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Modeling Guidelines for Subsystems

When you develop models and generate code for subsystems, use the modeling guideline
recommendations.

For more information, see “Modeling Guidelines” in the Simulink documentation.

Code
Generation
Modeling
Guidelines

“cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks”

High-Integrity

“hisl_0009: Usage of For Iterator Subsystem blocks”

Systems
Modeling “hisl_0010: Usage of If blocks and If Action Subsystem blocks”
Guidelines . . .
“hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”
“hisl_0023: Verification of model and subsystem variants”
MathWorks db_0040: Model hierarchy
Automotive
Advisory db_0042: Port block in Simulink models
Board (MAAB) . .
Control db_0081: Unconnected signals, block inputs and block outputs
Algorlth m db_0143: Similar block types on the model levels
Guidelines

db_0144: Use of Subsystems

db_0146: Triggered, enabled, conditional Subsystems
jc_0111: Direction of Subsystem

jc_0201: Usable characters for Subsystem names

jc_0231: Usable characters for block names

jc_0281: Naming of Trigger Port block and Enable Port block

jc_0321: Trigger layer

jc_0331: Structure layer
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jc_0351: Methods of initialization

jm_0002: Block resizing

na_0005: Port block name visibility in Simulink models
na_0006: Guidelines for mixed use of Simulink and Stateflow
na_0008: Display of labels on signals

na_0009: Entry versus propagation of signal labels

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

See Also

“Modeling Guidelines for Blocks” on page 2-36 | “Modeling Guidelines for Charts”
on page 2-39 | “Modeling Guidelines for MATLAB Functions” on page 2-41 |
“Modeling Guidelines for Model Configuration” on page 2-42
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Modeling Guidelines for Charts

When you develop models and generate code for charts, use the modeling guideline
recommendations.

For more information, see “Modeling Guidelines” in the Simulink documentation.

High-Integrity

“hisf_0001: Mealy and Moore semantics”

Systems
Modeling “hisf_0002: User-specified state/transition execution order”
Guidelines . . ) .
“hisf_0009: Strong data typing (Simulink and Stateflow boundary)”
“hisf_0011: Stateflow debugging settings”
“hisf_0003: Usage of bitwise operations”
“hisf_0004: Usage of recursive behavior”
“hisf_0007: Usage of junction conditions (maintaining mutual
exclusion)”
“hisf_0010: Usage of transition paths (looping out of parent of source
and destination objects)”
“hisf 0012: Chart comments”
“hisf_0013: Usage of transition paths (crossing parallel state
boundaries)”
“hisf_0014: Usage of transition paths (passing through states)”
“hisf_0015: Strong data typing (casting variables and parameters in
expressions)”
MathWorks db_0127: MATLAB commands in Stateflow
Automotive
Advisory db_0151: State machine patterns for transition actions
Board (MAAB) |. . . . .
Control jc_0451: Use of unary minus on unsigned integers in Stateflow
Algorithm . ) . . . . .
Guidelines jc_0481: Use of hard equality comparisons for floating point numbers in

Stateflow
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jc_0501: Format of entries in a State block

jc_0511: Setting the return value from a graphical function
jc_0521: Use of the return value from graphical functions
jc_0531: Placement of the default transition

jc_0541: Use of tunable parameters in Stateflow

jm_0011: Pointers in Stateflow

jm_0012: Event broadcasts

na_0001: Bitwise Stateflow operators

na_0013: Comparison operation in Stateflow

See Also

“Modeling Guidelines for Blocks” on page 2-36 | “Modeling Guidelines for Subsystems”
on page 2-37 | “Modeling Guidelines for MATLAB Functions” on page 2-41 |
“Modeling Guidelines for Model Configuration” on page 2-42
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Modeling Guidelines for MATLAB Functions

When you develop models and generate code for MATLAB Functions, use the modeling
guideline recommendations.

For more information, see “Modeling Guidelines” in the Simulink documentation.

High-Integrity |“himl_0001: Usage of standardized MATLAB function headers”

Systems

Modeling “himl_0002: Strong data typing at MATLAB function boundaries”

Guidelines ) o ) )
“himl_0003: Limitation of MATLAB function complexity”
“himl_0005: Usage of global variables in MATLAB functions”

See Also

“Modeling Guidelines for Blocks” on page 2-36 | “Modeling Guidelines for Subsystems”
on page 2-37 | “Modeling Guidelines for Charts” on page 2-39 | “Modeling Guidelines for
Model Configuration” on page 2-42
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Modeling Guidelines for Model Configuration

2-42

When you develop models and generate code, use the modeling guideline configuration
recommendations.

For more information, see “Modeling Guidelines” in the Simulink documentation.

Code
Generation
Modeling
Guidelines

“cgsl_0301: Prioritization of code generation objectives for code
efficiency”

“cgsl_0302: Diagnostic settings for multirate and multitasking models”

High-Integrity
Systems
Modeling
Guidelines

“hisl_0043: Configuration Parameters > Diagnostics > Solver”
“hisl_0044: Configuration Parameters > Diagnostics > Sample Time”
“his]_0301: Configuration Parameters > Diagnostics > Compatibility”

“hisl_0302: Configuration Parameters > Diagnostics > Data Validity >
Parameters”

“hisl_0303: Configuration Parameters > Diagnostics > Merge block”

“hisl_0304: Configuration Parameters > Diagnostics > Model
initialization”

“hisl_0305: Configuration Parameters > Diagnostics > Debugging”

“hisl_0306: Configuration Parameters > Diagnostics > Connectivity >
Signals”

“his]_0307: Configuration Parameters > Diagnostics > Connectivity >
Buses”

“hisl_0308: Configuration Parameters > Diagnostics > Connectivity >
Function calls”

“hisl_0309: Configuration Parameters > Diagnostics > Type
Conversion”

“hisl_0310: Configuration Parameters > Diagnostics > Model
Referencing”
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‘ “hisl_0311: Configuration Parameters > Diagnostics > Stateflow”

See Also

“Modeling Guidelines for Blocks” on page 2-36 | “Modeling Guidelines for Subsystems”
on page 2-37 | “Modeling Guidelines for Charts” on page 2-39 | “Modeling Guidelines for
MATLAB Functions” on page 2-41
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+ “Absolute and Elapsed Time Computation” on page 3-2
+ “Access Timers Programmatically” on page 3-5
+ “Generate Code for an Elapsed Time Counter” on page 3-9

+  “Absolute Time Limitations” on page 3-12
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Absolute and Elapsed Time Computation

In this section...

“About Timers” on page 3-2
“Timers for Periodic and Asynchronous Tasks” on page 3-3
“Allocation of Timers” on page 3-3

“Integer Timers in Generated Code” on page 3-3

“Elapsed Time Counters in Triggered Subsystems” on page 3-4

About Timers

Certain blocks require the value of either absolute time (that is, the time from the start
of program execution to the present time) or elapsed time (for example, the time elapsed
between two trigger events). Targets that support the real-time model (rtModel) data
structure provide efficient time computation services to blocks that request absolute or
elapsed time. Absolute and elapsed timer features include

* Timers are implemented as unsigned integers in generated code.

* In multirate models, at most one timer is allocated per rate. If no blocks executing
at a given rate require a timer, a timer is not allocated to that rate. This minimizes
memory allocated for timers and significantly reduces overhead involved in
maintaining timers.

+ Allocation of elapsed time counters for use of blocks within triggered subsystems is
minimized, further reducing memory usage and overhead.

+ S-function and TLC APIs let your S-functions access timers, in simulation and code
generation.

*  The word size of the timers is determined by a user-specified maximum counter value,
Application lifespan (days). If you specify this value, timers will not overflow.
For more information, see “Control Memory Allocation for Time Counters” on page
31-15.

See “Absolute Time Limitations” on page 3-12 for more information about absolute
time and the restrictions that it imposes.
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Timers for Periodic and Asynchronous Tasks

Timing services provided for blocks execute within periodic tasks (that is, tasks running
at the model base rate or subrates).

The code generator also provides timer support for blocks whose execution is
asynchronous with respect to the periodic timing source of the model. See the following
topics:

+ “Timers in Asynchronous Tasks” on page 5-42

+ “Create a Customized Asynchronous Library” on page 5-45

Allocation of Timers

If you create or maintain an S-Function block that requires absolute or elapsed time
data, it must register the requirement (see “Access Timers Programmatically” on page
3-5). In multirate models, timers are allocated on a per-rate basis. For example,
consider a model structured as follows:

* There are three rates, A, B, and C, in the model.
*  No blocks running at rate B require absolute or elapsed time.

* Two blocks running at rate C register a requirement for absolute time.

* One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively. The timing
engine updates the timers as the tasks associated with rates A and C execute. Blocks
executing at rates A and C obtain time data from the timers associated with rates A and

C.

Integer Timers in Generated Code

In the generated code, timers for absolute and elapsed time are implemented as unsigned
integers. The default size is 64 bits. This is the amount of memory allocated for a timer

if you specify a value of inf for the Application lifespan (days) parameter. For an
application with a sample rate of 1000 MHz, a 64-bit counter will not overflow for more
than 500 years. See “Timers in Asynchronous Tasks” on page 5-42 and “Control

Memory Allocation for Time Counters” on page 31-15 for more information.
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Elapsed Time Counters in Triggered Subsystems

Some blocks, such as the Discrete-Time Integrator block, perform computations requiring
the elapsed time (delta T) since the previous block execution. Blocks requiring elapsed
time data must register the requirement (see “Access Timers Programmatically” on page
3-5). A triggered subsystem then allocates and maintains a single elapsed time

counter if required. This timer functions at the subsystem level, not at the individual
block level. The timer is generated if the triggered subsystem (or a unconditionally
executed subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note: If you are using simplified initialization mode, elapsed time is reset on first
execution after becoming enabled, whether or not the subsystem is configured to reset
on enable. For more information, see “Underspecified initialization detection” in the
Simulink documentation.

More About
. “Access Timers Programmatically” on page 3-5
. “Generate Code for an Elapsed Time Counter” on page 3-9

. “Optimize Memory Usage for Time Counters” on page 31-83

. “Absolute Time Limitations” on page 3-12
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Access Timers Programmatically

In this section...

“About Timer APIs” on page 3-5

“C API for S-Functions” on page 3-5

“TLC API for Code Generation” on page 3-7

About Timer APIs

This topic describes APIs that let your S-functions take advantage of the efficiencies
offered by absolute and elapsed timers. SimStruct macros are provided for use in
simulation, and TLC functions are provided for inlined code generation. Note that

* To generate and use the new timers as described above, your S-
functions must register the need to use an absolute or elapsed timer
by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

+  Existing S-functions that read absolute time but do not register by using these macros
continue to operate as expected, but generate less efficient code.

C API for S-Functions

The SimStruct macros described in this topic provide access to absolute and elapsed
timers for S-functions during simulation.

In the functions below, the SImStruct *S argument is a pointer to the simstruct of
the calling S-function.

* void ssSetNeedAbsoluteTime(SimStruct *S, boolean b):if b is TRUE,
registers that the calling S-function requires absolute time data, and allocates an
absolute time counter for the rate at which the S-function executes (if such a counter
has not already been allocated).

+ int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function has
registered that it requires absolute time.

+ double ssGetTaskTime(SimStruct *S, tid): read absolute time for a given
task with task identifier tid. ssGetTaskTime operates transparently, regardless of
whether or not you use the new timer features. ssGetTaskTime is documented in the
SimStruct Functions chapter of the Simulink documentation.
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+ void ssSetNeedElapseTime(SimStruct *S, boolean b):if bis TRUE,
registers that the calling S-function requires elapsed time data, and allocates an
elapsed time counter for the triggered subsystem in which the S-function executes (if
such a counter has not already been allocated). See also “Elapsed Time Counters in
Triggered Subsystems” on page 3-4.

* int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function has
registered that it requires elapsed time.

+ void ssGetElapseTime(SimStruct *S, (double *)elapseTime): returns, to
the location pointed to by elapseTime, the value (as a double) of the elapsed time
counter associated with the S-function.

+ void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the S-function
to the location pointed to by dtype. This function is intended for use with the
ssGetElapseTimeCounter function (see below).

* void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution. This
function is intended for use with the ssGetElapseTimeCounter function (see
below).

+ void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime): This
function is provided for the use of blocks that require the elapsed time values for
fixed-point computations. ssGetElapseTimeCounter returns, to the location pointed
to by elapseTime, the integer value of the elapsed time counter associated with the
S-function. If the counter size is 64 bits, the value is returned as an array of two 32-
bit words, with the low-order word stored at the lower address.

To determine how to access the returned counter value, obtain the data type of the
counter by calling ssGetElapseTimeCounterDtype, as in the following code:

int *y_dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
ssGetElapseTimeCounter (S, dataPtr);
}
break;

case SS_UINT32:
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{
uint32_T dataPtr[1];

ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT16:
{
uintl6_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINTS:
{
uint8 T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_DOUBLE:
{
real_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
default:
ssSetErrorStatus(S, "Invalid data type for elaspe time
counter™);
break;

}

If you want to use the actual elapsed time, issue a call to the ssGetElapseTime
function to access the elapsed time directly. You do not need to get the counter value
and then calculate the elapsed time.

double *y_elapseTime;

ssGetElapseTime(S, elapseTime)

TLC API for Code Generation

The following TLC functions support elapsed time counters in generated code when you
inline S-functions by writing TLC scripts for them.
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+ LibGetTaskTimeFromTID(block): Generates code to read the absolute time for the
task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions in
the TLC Function Library Reference pages of the Target Language Compiler
documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base rate (tid
0) timer. If LibGetT is called for a block executing at a subrate, the wrong timer is
read, causing serious errors.

+ LibGetElapseTime(system): Generates code to read the elapsed time counter for
systenm. (system is the parent system of the calling block.) See “Generate Code for
an Elapsed Time Counter” on page 3-9 for an example of code generated by this
function.

+ LibGetElapseTimeCounter(system): Generates code to read the integer
value of the elapsed time counter for system. (system is the parent system
of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeld and LibGetElapseTimeResolution. (See
the discussion of ssGetElapseTimeCounter above.)

+ LibGetElapseTimeCounterDtypeld(system): Generates code that returns the
data type of the elapsed time counter for system. (system is the parent system of the
calling block.)

+ LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent system of
the calling block.)

More About

. “Absolute and Elapsed Time Computation” on page 3-2
. “Generate Code for an Elapsed Time Counter” on page 3-9

. “Absolute Time Limitations” on page 3-12
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Generate Code for an Elapsed Time Counter

This example shows a model that includes a triggered subsystem, Amplifier, consisting
of a Discrete-Time Integrator block that uses an elapsed time counter. The model
ex_elapseTime is in the folder matlab/help/toolbox/rtw/examples.

+H+H
P
4 H
Fuke
Generator 4
. &
INPUT OuTPUT
Constant
Amplifier
ex_elapseTime Model
Trigger
K Ts
- ————»
D s > -

Dis orete-Time
Integrator

Amplifier Subsystem

Code in the generated header file ex_elapseTime.h for the model uses 64 bits to
implement the timer for the base rate (clockTickO and clockTickHO).

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
time_T taskTimeO;
uint32_T clockTickO;
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uint32_T clockTickHO;

time_T stepSizeO;

time_T tFinal;

boolean_T stopRequestedFlag;
} Timing;

The code generator allocates storage for the previous-time value and elapsed-time value
of the Amplifier subsystem (Amplifier_ PREV_T) in the D_Work(states) structure
in ex_elapsedTime_h.

/* Block states (auto storage) for system "<Root>" */
typedef struct {
real _T DiscreteTimelntegrator DSTATE;/* "<S1>/Discrete-Time Integrator®™ */

int32_T clockTickCounter; /* "<Root>/Pulse Generator® */
uint32_T Amplifier_ELAPS T[2]; /* "<Root>/Amplifier® */
uint32_T Amplifier_PREV_T[2]; /* "<Root>/Amplifier® */

} DW_ex_elapseTime_T;

The elapsed time computation is performed as follows within the ex_elapseTime_step
function:

/* Outputs for Triggered SubSystem: "<Root>/Amplifier”™ incorporates:
* TriggerPort: "<S1>/Trigger”
*/
zcEvent = rt_ZCFcn(RISING_ZERO _CROSSING,
&ex_elapseTime_PrevZCX.Amplifier_Trig_ZCE,
((real_T)rtb_PulseGenerator));
if (zcEvent != NO_ZCEVENT) {
elapseT_H = ex_elapseTime_M->Timing.clockTickHO -
ex_elapseTime DW.Amplifier_PREV_T[1];
if (ex_elapseTime DW.Amplifier_PREV_T[O0] >
ex_elapseTime_M->Timing.clockTick0) {
elapseT_H--;

}

ex_elapseTime DW.Amplifier ELAPS T[0] = ex_elapseTime M->Timing.clockTickO -
ex_elapseTime DW.Amplifier_PREV_T[O0];

ex_elapseTime DW.Amplifier_ PREV_T[0] = ex_elapseTime_M->Timing.clockTickO;
ex_elapseTime DW.Amplifier_ELAPS T[1] = elapseT_H;

ex_elapseTime DW.Amplifier_ PREV_T[1] = ex_elapseTime_M->Timing.clockTickHO;

As shown above, the elapsed time is maintained as a state of the triggered subsystem.

The Discrete-Time Integrator block finally performs its output and update computations
using the elapsed time.
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/* Discretelntegrator: "<S1>/Discrete-Time Integrator®™ */
OUTPUT = ex_elapseTime_DW._DiscreteTimelntegrator_DSTATE;

/* Update for Discretelntegrator: "<Sl1>/Discrete-Time Integrator®™ incorporates:
* Constant: "<Root>/Constant”

*/

ex_elapseTime_DW._DiscreteTimelntegrator DSTATE += 0.3 * (real_T)
ex_elapseTime_DW._Amplifier_ELAPS T[0] * 1.5;

More About

. “Absolute and Elapsed Time Computation” on page 3-2

. “Absolute Time Limitations” on page 3-12
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Absolute Time Limitations

3-12

Absolute time is the time that has elapsed from the beginning of program execution to
the present time, as distinct from elapsed time, the interval between two events. See
“Absolute and Elapsed Time Computation” on page 3-2 for more information.

When you design an application that is intended to run indefinitely, you must take care
when logging time values, or using charts or blocks that depend on absolute time. If the
value of time reaches the largest value that can be represented by the data type used
by the timer to store time, the timer overflows and the logged time or block output is
incorrect.

If your target uses rtModel, you can avoid timer overflow by specifying a value for the
Application life span parameter. See “Integer Timers in Generated Code” on page 3-3
for more information.

The following limitations apply to absolute time:
+ If you log time values by opening the Configuration Parameters dialog box and

enabling Data Import/Export > Time parameter, your model uses absolute time.

+  Every Stateflow chart that uses time is dependent on absolute time. The only way to
eliminate the dependency is to change the Stateflow chart to not use time.

* The following Simulink blocks depend on absolute time:

+ Backlash

« Chirp Signal

+ Clock

+ Derivative

+ Digital Clock

+ Discrete-Time Integrator (only when used in triggered subsystems)
*+ From File

* From Workspace

* Pulse Generator

* Ramp

+ Rate Limiter

* Repeating Sequence
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+ Signal Generator

* Sine Wave (only when the Sine type parameter is set to Time-based)
Step

+ To File

* To Workspace (only when logging to StructureWithTime format)
Transport Delay
Variable Time Delay

* Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend on
absolute time. See the documentation for the blocksets that you use.

More About

. “Absolute and Elapsed Time Computation” on page 3-2
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Time-Based Scheduling and Code Generation

In this section...

“Sample Time Considerations” on page 4-2

“Tasking Modes” on page 4-2

“Model Execution and Rate Transitions” on page 4-4
“Execution During Simulink Model Simulation” on page 4-5
“Model Execution in Real Time” on page 4-5

“Single-Tasking Versus Multitasking Operation” on page 4-6

Sample Time Considerations

Simulink models run at one or more sample times. The Simulink product provides
considerable flexibility in building multirate systems, that is, systems with more than
one sample time. However, this same flexibility also allows you to construct models for
which the code generator cannot generate real-time code for execution in a multitasking
environment. To make multirate models operate as expected in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the Simulink
engine to modify the model for you. In general, the modifications involve placing Rate
Transition blocks between blocks that have unequal sample times. The following sections
discuss issues you must address to use a multirate model in a multitasking environment.
For a comprehensive discussion of sample times, including rate transitions, see “What

Is Sample Time?”, “Sample Times in Subsystems”, “Sample Times in Systems”, “Resolve
Rate Transitions”, and associated topics.

Tasking Modes

There are two execution modes for a fixed-step Simulink model: single-tasking and
multitasking. These modes are available only for fixed-step solvers. To select an
execution mode, use the Treat each discrete rate as a separate task checkbox on
the Solver pane of the Configuration Parameters dialog box. When this parameter is
selected, multitasking execution is applied for a multirate model. When this option is
cleared, single-tasking execution is applied.

Note: A model that is multirate and uses multitasking cannot reference a multirate
model that uses single-tasking.
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Execution of models in a real-time system can be done with the aid of a real-time
operating system, or it can be done on bare-metal target hardware, where the model runs
in the context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX" or Microsoft® Windows systems)
is multitasking does not imply that your program can execute in real time. This is
because the program might not preempt other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at a given time,
an interrupt service routine (ISR) must perform the steps of saving the processor context,
executing the model code, collecting data, and restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic context
switching and task scheduling. This simplifies the operations performed by the ISR. In
this case, the ISR simply enables the model execution task, which is normally blocked.
The next figure illustrates this difference.
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Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

Save Context

Y

Execute Model

Y

Collect Data

|

Restore Context

Program execution using an
interrupt service routine
(bareboard, with no real-time
operating system). See the
grt target for an example.

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

semGive

Context
Switch

"

Program execution using a real-time
operating system primitive. See the
Tornado target for an example.

Model Execution and Rate Transitions

To generate code that executes as expected in real time, you (or the Simulink engine)
might need to identify and handle sample rate transitions within the model. In
multitasking mode, by default the Simulink engine flags errors during simulation if
the model contains invalid rate transitions, although you can use the Multitask rate
transition diagnostic to alter this behavior. A similar diagnostic, called Single task

Model Execution
Task

semTake

¥

Execute Model

v

Collect Data

rate transition, exists for single-tasking mode.
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To avoid raising rate transition errors, insert Rate Transition blocks between tasks. You
can request that the Simulink engine handle rate transitions automatically by inserting
hidden Rate Transition blocks. See “Automatic Rate Transition” on page 4-25 for an
explanation of this option.

To understand such problems, first consider how Simulink simulations differ from real-
time programs.

Execution During Simulink Model Simulation

Before the Simulink engine simulates a model, it orders the blocks based upon their
topological dependencies. This includes expanding virtual subsystems into the individual
blocks they contain and flattening the entire model into a single list. Once this step is
complete, each block is executed in order.

The key to this process is the ordering of blocks. A block whose output is directly
dependent on its input (that is, a block with direct feedthrough) cannot execute until the
block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time step or from
initial conditions specified as a block parameter. The output of such a block is determined
by a value stored in memory, which can be updated independently of its input. During
simulation, computations are performed prior to advancing the variable corresponding to
time. This results in computations occurring instantaneously (that is, no computational
delay).

Model Execution in Real Time

A real-time program differs from a Simulink simulation in that the program must
execute the model code synchronously with real time. Every calculation results in some
computational delay. This means the sample intervals cannot be shortened or lengthened
(as they can be in a Simulink simulation), which leads to less efficient execution.

Consider the following timing figure.

4-5
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Note the processing inefficiency in the sample interval t1. That interval cannot be
compressed to increase execution speed because, by definition, sample times are clocked
in real time.

You can circumvent this potential inefficiency by using the multitasking mode. The
multitasking mode defines tasks with different priorities to execute parts of the model
code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 4-12 for a description of
how this works. It is important to understand that section before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all computations must
be executed within each clock period. This can result in inefficient use of available CPU
time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is large and
has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks execute

at a slower rate, multitasking can actually degrade performance. In such a model, the
overhead incurred in task switching can be greater than the time required to execute the
slower blocks. In this case, it is more efficient to execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might need to
modify your model by adding Rate Transition blocks (or instruct the Simulink engine to
do so) to generate expected results.

For more information about the two modes of execution and examples, see “Modeling for
Single-Tasking Execution” on page 4-8 and “Modeling for Multitasking Execution”
on page 4-12.
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More About

“What Is Sample Time?”

“Sample Times in Subsystems”

“Sample Times in Systems”

“Configure Time-Based Scheduling” on page 4-34
“Sample Times in Subsystems”

“Sample Times in Systems”

“Resolve Rate Transitions”

“Handle Rate Transitions” on page 4-20

“Time-Based Scheduling and Code Generation” on page 4-2
“Modeling for Single-Tasking Execution” on page 4-8
“Modeling for Multitasking Execution” on page 4-12
“Time-Based Scheduling Example Models” on page 4-36
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Modeling for Single-Tasking Execution

Single-Tasking Mode

You can execute model code in a strictly single-tasking manner. While this mode is less
efficient with regard to execution speed, in certain situations, it can simplify your model.

In single-tasking mode, the base sample rate must define a time interval that is long
enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking execution.

t0 t1 t2 t3 t4

' N A A ' N /' N

Single-tasking system execution requires a base sample rate that is long enough to
execute one step through the entire model.

Build a Program for Single-Tasking Execution

To use single-tasking execution, clear the Treat each discrete rate as a separate task
checkbox on the Solver pane of the Configuration Parameters dialog box. If you select
the checkbox, single-tasking mode is used in the following cases:

+ If your model contains one sample time

+ If your model contains a continuous and a discrete sample time and the fixed step size
is equal to the discrete sample time

Single-Tasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers operation in both single-tasking and
multitasking modes, as determined by setting of the Treat each discrete rate as a
separate task parameter on the Solver pane.

4-8



Modeling for Single-Tasking Execution

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

CH
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ﬂh P g g g e gErser i e G
- M [m = m outt
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SampleTime=0.1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the Treat each discrete
rate as a separate task checkbox is cleared, which indicates the single-tasking mode.

In a single-tasking system, if the Block reduction option on the All Parameters tab is
on, fast-to-slow Rate Transition blocks are optimized out of the model. The default case is
shown (Block reduction on), so block B does not appear in the timing diagrams in this
section. For more information, see “Block reduction”.

The following table shows, for each block in the model, the execution order, sample time,
and whether the block has an output or update computation. Block A does not have
discrete states, and accordingly does not have an update computation.

Execution Order and Sample Times (Single-Tasking)
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Update:

Time:
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Blocks Sample Time Output Update
(in Execution Order) |(in Seconds)

E 0.1 Y Y

F 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y

Real-Time Single-Tasking Execution

The next figure shows the scheduling of computations when the generated code is
deployed in a real-time system. The generated program is shown running in real time,
under control of interrupts from a 10 Hz timer.

(uuait) ¥ (unaif)
Ere]  EA | 3
| ] | . | o
| | I I "
0.0 oA oz 1.0

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks execute their
output computations; this is followed by update computations for blocks that have states.
Within a given time interval, output and update computations are sequenced in block
execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output computations are
followed by update computations.

The system spends some portion of each time interval (labeled “wait”) idling. During
the intervals when only the fast blocks execute, a larger portion of the interval is spent
idling. This illustrates an inherent inefficiency of single-tasking mode.
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Simulated Single-Tasking Execution

The next figure shows the execution of the model during the Simulink simulation loop.

Update: o [EF [EF - [EF5 ).
[ | o

Time 0.0 0.1 0z 11

Because time is simulated, the placement of ticks represents the iterations of the
simulation loop. Blocks execute in exactly the same order as in the previous figure,

but without the constraint of a real-time clock. Therefore there is no idle time between
simulated sample periods.

More About

“Time-Based Scheduling and Code Generation” on page 4-2
“Configure Time-Based Scheduling” on page 4-34
“Time-Based Scheduling Example Models” on page 4-36
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Modeling for Multitasking Execution
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Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks with the
fastest sample rates are executed by the task with the highest priority, the next fastest
blocks are executed by a task with the next higher priority, and so on. Time available in
between the processing of high-priority tasks is used for processing lower priority tasks.
This results in efficient program execution.

Where tasks are asynchronous rather than periodic, there may not necessarily be

a relationship between sample rates and task priorities; the task with the highest
priority need not have the fastest sample rate. You specify asynchronous task priorities
using Async Interrupt and Task Sync blocks. You can switch the sense of what priority
numbers mean by selecting or deselecting the Solver option Higher priority value
indicates higher task priority.

In multitasking environments (that is, under a real-time operating system), you can

define separate tasks and assign them priorities. For bare-metal target hardware (that
1s, no real-time operating system present), you cannot create separate tasks. However,
generated application modules implement what is effectively a multitasking execution
scheme using overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently in progress.
When this happens, the current interrupt is preempted, the floating-point unit (FPU)
context is saved, and the higher priority interrupt executes its higher priority (that is,
faster sample rate) code. Once complete, control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems are handled by the
code generator in multitasking, pseudomultitasking, and single-tasking environments.
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is pending.

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt O does not return until after Interrupts 1, 2,
and 3.
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Build a Program for Multitasking Execution

To use multitasking execution, select the Treat each discrete rate as a separate
task check box on the Solver pane of the Configuration Parameters dialog box. This
menu is active only if you select Fixed-step as the solver type. Auto mode results in a
multitasking environment if your model has two or more different sample times. A model
with a continuous and a discrete sample time runs in single-tasking mode if the fixed-
step size is equal to the discrete sample time.

Execute Multitasking Models

In cases where the continuous part of a model executes at a rate that is different from
the discrete part, or a model has blocks with different sample rates, the Simulink
engine assigns each block a task identifier (tid) to associate the block with the task that
executes at the block's sample rate.

4-14
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You set sample rates and their constraints on the Solver pane of the Configuration
Parameters dialog box. To generate code, select Fixed-step for the solver type. Certain
restrictions apply to the sample rates that you can use:

* The sample rate of a block must be an integer multiple of the base (that is, the fastest)
sample period.

* When Periodic sample time constraint is unconstrained, the base sample
period is determined by the Fixed step size specified on the Solvers pane of the
Configuration parameters dialog box.

* When Periodic sample time constraint is Specified, the base rate fixed-
step size is the first element of the sample time matrix that you specify in the
companion option Sample time properties. The Solver pane from the example
model rtwdemo_mrmtbb shows an example.

Simulation time

Start time: |0.0 | Stop time: |10.0

Solver options

Type: |Fixed-step = | Solver:  discrete (no continuous states) b

¥ Additional options

Fixed-step size (fundamental sample time): auto

Tasking and sample time options

Pericdic sample time constraint: Specified -

Sample time properties: | [[1,0,0];[2,0,1];]

Treat each discrete rate as a separate task
[] Automatically handle rate transition for data transfer

] Higher priority value indicates higher task priority

+  Continuous blocks execute by using an integration algorithm that runs at the base
sample rate. The base sample period is the greatest common denominator of all rates
in the model only when Periodic sample time constraint is set to Unconstrained
and Fixed step size is Auto.
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* The continuous and discrete parts of the model can execute at different rates only if
the discrete part is executed at the same or a slower rate than the continuous part
and is an integer multiple of the base sample rate.

Multitasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers operation in both single-tasking and
multitasking modes, as determined by setting of the Treat each discrete rate as a
separate task parameter on the Solver pane.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.
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Sine WE\E Rae Trans tion DEUHE_F'“E' Rate Transition Dis reteTime Discete State-Space
SampleTime=0.1 (Fastto Slow) SampieTime=1 {Slow to Fast) Integrator SampleTime=0.1
Sample Time=0.1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the solver Tasking mode
is MultiTasking. Block computations are executed under two tasks, prioritized by rate:
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* The slower task, which gets the lower priority, is scheduled to run every second. This
is called the I second task.

* The faster task, which gets higher priority, is scheduled to run 10 times per second.
This is called the 0.1 second task. The 0.1 second task can preempt the 1 second task.

The following table shows, for each block in the model, the execution order, the task
under which the block runs, and whether the block has an output or update computation.
Blocks A and B do not have discrete states, and accordingly do not have an update

computation.

Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution Order)

Task

Output

Update

E

0.1 second task

F

0.1 second task

D

The Rate Transition block uses port-
based sample times.

Output runs at the output port sample
time under 0.1 second task.

Update runs at input port sample time
under 1 second task.

For more information on port-based
sample times, see “Sample Times for
Model Referencing” in the Simulink
documentation.

0.1 second task

The Rate Transition block uses port-
based sample times.

Output runs at the output port sample
time under 0.1 second task.

For more information on port-based
sample times, see “Sample Times for
Model Referencing” in the Simulink
documentation.

1 second task
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Real-Time Multitasking Execution

The next figure shows the scheduling of computations in MultiTasking solver mode
when the generated code is deployed in a real-time system. The generated program is
shown running in real time, as two tasks under control of interrupts from a 10 Hz timer.
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Simulated Multitasking Execution

The next figure shows the Simulink execution of the same model, in MultiTasking
solver mode. In this case, the Simulink engine runs the blocks in one thread of execution,
simulating multitasking. No preemption occurs.
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More About
. “Time-Based Scheduling and Code Generation” on page 4-2
. “Sample Times in Subsystems”
. “Sample Times in Systems”

. “Configure Time-Based Scheduling” on page 4-34

. “Resolve Rate Transitions”

. “Handle Rate Transitions” on page 4-20

. “Time-Based Scheduling Example Models” on page 4-36
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Rate Transitions

Two periodic sample rate transitions can exist within a model:

+ A faster block driving a slower block

+ A slower block driving a faster block

The following sections concern models with periodic sample times with zero offset only.
Other considerations apply to multirate models that involve asynchronous tasks. For
details on how to generate code for asynchronous multitasking, see “Asynchronous
Support” on page 5-2.

In multitasking and pseudomultitasking systems, differing sample rates can cause blocks
to be executed in the wrong order. To prevent possible errors in calculated data, you must
control model execution at these transitions. When connecting faster and slower blocks,
you or the Simulink engine must add Rate Transition blocks between them. Fast-to-slow
transitions are illustrated in the next figure.

—>
—» T=1s » T=2s
—>
Faster Slower
Block Block
becomes
—
.| Port-based: R _
3 T=1s Tin=1s;Tout=2s | T=2s
Faster Rate Transition Slower
Block Block

Slow-to-fast transitions are illustrated in the next figure.
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—>
—» T=2s » T=1s
—>
Slower Faster
Block Block
becomes
—
.| Port-based: R
:: T=2s »|Tin = 2s; Tout = 1s » T=1s
Slower Rate Transition Faster
Block Block

Note: Although the Rate Transition block offers a superset of the capabilities of the Unit
Delay block (for slow-to-fast transitions) and the Zero-Order Hold block (for fast-to-slow
transitions), you should use the Rate Transition block instead of these blocks.

Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism associated
with data transfer between blocks running at different rates.

*  Data integrity: A problem of data integrity exists when the input to a block changes
during the execution of that block. Data integrity problems can be caused by
preemption.

Consider the following scenario:

A faster block supplies the input to a slower block.

* The slower block reads an input value V; from the faster block and begins
computations using that value.

The computations are preempted by another execution of the faster block, which
computes a new output value V5.

+ A data integrity problem now arises: when the slower block resumes execution, it
continues its computations, now using the “new” input value V5.

4-21
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Such a data transfer is called unprotected. “Faster to Slower Transitions in Real
Time” on page 4-29 shows an unprotected data transfer.

In a protected data transfer, the output V; of the faster block is held until the slower
block finishes executing.

»  Deterministic versus nondeterministic data transfer: In a deterministic data transfer,
the timing of the data transfer is completely predictable, as determined by the sample
rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability of data, the
sample rates of the blocks, and the time at which the receiving block begins to execute
relative to the driving block.

You can use the Rate Transition block to protect data transfers in your application

and make them deterministic. These characteristics are considered desirable in most
applications. However, the Rate Transition block supports flexible options that allow you
to compromise data integrity and determinism in favor of lower latency. The next section
summarizes these options.

Data Transfer Assumptions

When processing data transfers between tasks, the code generator makes these
assumptions:

+ Data transitions occur between a single reading task and a single writing task.
+ A read or write of a byte-sized variable is atomic.

*  When two tasks interact through a data transition, only one of them can preempt the
other.

+  For periodic tasks, the faster rate task has higher priority than the slower rate task;
the faster rate task preempts the slower rate task.

+ All tasks run on a single processor. Time slicing is not allowed.

+ Processes do not crash or restart (especially while data is transferred between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code generation
for real-time execution, as discussed below. For a complete block description, see Rate
Transition in the Simulink documentation.
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The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing sample rates,
the Rate Transition block automatically configures its input and output sample rates for
the type of transition; you do not need to specify whether a transition is slow-to-fast or
fast-to-slow (low-to-high or high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is the choice
of data transfer mechanism to be used between the two rates. Your choice is dictated by
considerations of safety, memory usage, and performance. As the Rate Transition block
parameter dialog box in the next figure shows, the data transfer mechanism is controlled
by two options.

E! Function Block Parameters: Rate Transition E3

—RateTransition

Handle transfer of data between parts operating at different rates. Configuration
options allow you ko trade ofF transfer delay and code efficiency For safety and
determinism of data transfer. The default configuration assures safe and
deterministic daka transfer. The black's behavior depends on option settings andfor
the sample times of its input and output ports. Updating the block diagram causes
text on the block's icon to indicate its behavior as Follows:

Z0H: Zero Order Hold
1/z: Unit Delay
Buf: Copy inpuk to output under semaphore control
Db_buf: Copy inpuk to oukput, using double buffers
Copy: Unpratected copy From input to output
MNoCp: Mo Operation
Mixed: Expanded to rmultiple blocks with different
behaviors
—Parameters

¥ Ensure data integrity during data transfer
¥ Ensure deterministic data transfer (maximum delay)
Initial conditions:

o

Oukput port sample time options: | Specify j

Outpuk port sample time:

-1

o4 Cancel | Help | Apply |

+ Ensure data integrity during data transfer: When this option is on, data
transferred between rates maintains its integrity (the data transfer is protected).
When this option is off, the data might not maintain its integrity (the data transfer is
unprotected). By default, Ensure data integrity during data transfer is on.
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Ensure deterministic data transfer (maximum delay): This option is supported
for periodic tasks with an offset of zero and fast and slow rates that are multiples

of each other. Enable this option for protected data transfers (when Ensure data
integrity during data transfer is on). When this option is on, the Rate Transition
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a Unit
Delay block (for slow to fast transitions). The Rate Transition block controls the
timing of data transfer in a completely predictable way. When this option is off, the
data transfer is nondeterministic. By default, Ensure deterministic data transfer
(maximum delay) is on for transitions between periodic rates with an offset of zero;
for asynchronous transitions, it cannot be selected.

Thus the Rate Transition block offers three modes of operation with respect to data
transfer. In order of level of safety:

Protected/Deterministic (default): This is the safest mode. The drawback of this
mode is that it introduces deterministic latency into the system for the case of slow-
to-fast periodic rate transitions. For that case, the latency introduced by the Rate

Transition block is one sample period of the slower task. For the case of fast-to-slow
periodic rate transitions, the Rate Transition block introduces no additional latency.

Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred between
rates. For fast-to-slow periodic rate transitions, a semaphore flag is used. The blocks
downstream from the Rate Transition block use the latest available data from the
block that drives the Rate Transition block. Maximum latency is less than or equal to
one sample period of the faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage of this
mode is its low latency.

Unprotected/NonDeterministic: This mode is not recommended for mission-
critical applications. The latency of this mode is the same as for Protected/
NonDeterministic mode, but memory requirements are reduced since neither double-
buffering nor semaphores are required. That is, the Rate Transition block does
nothing in this mode other than to pass signals through; it simply exists to notify
you that a rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data transfer option
off), the Rate Transition block does nothing other than allow the rate transition to
exist in the model.
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Rate Transition Blocks and Continuous Time

The sample time at the output port of a Rate Transition block can only be discrete

or fixed in minor time step. This means that when a Rate Transition block inherits
continuous sample time from its destination block, it treats the inherited sample time as
Fixed in Minor Time Step. Therefore, the output function of the Rate Transition block
runs only at major time steps. If the destination block sample time is continuous, Rate
Transition block output sample time is the base rate sample time @f solver is fixed-step),
or zero-order-hold-continuous sample time (if solver is variable-step).

Automatic Rate Transition

The Simulink engine can detect mismatched rate transitions in a multitasking model
during an update diagram and automatically insert Rate Transition blocks to handle
them. To enable this, in the Solver pane of model configuration parameters, select
Automatically handle rate transition for data transfer. The default setting for this
option is off. When you select this option:

+ Simulink handles transitions between periodic sample times and asynchronous tasks.
* Simulink inserts hidden Rate Transition blocks in the block diagram.

* The code generator produces code for the Rate Transition blocks that were
automatically inserted. This code is identical to the code generated for Rate
Transition blocks that were inserted manually.

* Automatically inserted Rate Transition blocks operate in protected mode for periodic
tasks and asynchronous tasks. You cannot alter this behavior. For periodic tasks,
automatically inserted Rate Transition blocks operate with the level of determinism
specified by the Deterministic data transfer parameter in the Solver pane.

The default setting is Whenever possible, which enables determinism for data
transfers between periodic sample-times that are related by an integer multiple. For
more information, see “Deterministic data transfer”. To use other modes, you must
insert Rate Transition blocks and set their modes manually.

For example, in this model, SineWave2 has a sample time of 2, and SineWave3 has a
sample time of 3.
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When you select Automatically handle rate transition for data transfer, Simulink
inserts a Rate Transition block between each Sine Wave block and the Product block.
The inserted blocks have the parameter values needed to reconcile the Sine Wave block
sample times.

If the input port and output port data sample rates in a model are not multiples of
each other, Simulink inserts a Rate Transition block whose sample rate is the greatest
common divisor (GCD) of the two rates. If no other block in the model contains this new
rate, an error occurs during simulation. In this case, you must insert a Rate Transition
block manually.

Visualize Inserted Rate Transition Blocks

When you select the Automatically handle rate transition for data transfer option,
Simulink inserts Rate Transition blocks in the paths that have mismatched transition
rates. These blocks are hidden by default. To visualize the inserted blocks, update the
diagram. Badge labels appear in the model and indicate where Simulink inserted Rate
Transition blocks during the compilation phase. For example, in this model, three Rate
Transition blocks were inserted between the two Sine Wave blocks and the Multiplexer
and Integrator when the model compiled. The ZOH and DbBuf badge labels indicate
these blocks.
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y e

Sine Wave?2 — L » smouts
Discrete-Time To Workspace5
Integrator?

_|-"-|_IU|I

SineWave3

You can show or hide badge labels using the Display > Signals and Ports > Hidden
Rate Transition Block Indicators setting.

To configure the hidden Rate Transition blocks, right click on a badge label and click on
Insert rate transition block to make the block visible.

d 8 e

Sine Wave2 RT2 1 »  smouts
Z-
) Discrete-Time 10 Workspaceb
ﬁ Integrator2

RT1

Ny

SineWave3 RT

When you make hidden Rate Transition blocks visible:

* You can see the type of Rate Transition block inserted as well as the location in the
model.

* You can set the Initial Conditions of these blocks.
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* You can change block parameters for rate transfer.

Validate the changes to your model by updating your diagram.

Y

lﬁu D2 D3
KTs | D3

Sine Wave?2 —®» smouth

z-1
Discrete-Time To Workspace5
Integrator2

D3
J“IU_,

SineWave3

Displaying inserted Rate Transition blocks is not compatible with:

+  Concurrent execution environment

+  Export-function models

To learn more about the types of Rate Transition blocks, see Rate Transition.

Periodic Sample Rate Transitions

These sections describe cases in which Rate Transition blocks are required for periodic
sample rate transitions. The discussion and timing diagrams in these sections are
based on the assumption that the Rate Transition block is used in its default (protected/
deterministic) mode; that is, the Ensure data integrity during data transfer and
Ensure deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct feedthrough, the
outputs of the faster block are computed first. In simulation intervals where the slower
block does not execute, the simulation progresses more rapidly because there are fewer
blocks to execute. The next figure illustrates this situation.
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t0 t1 t2 t3
— A A A A
—» T=1s p T=2s
— T=1s| T=2s |T=1s|T=1s| T=2s |T=1s
Faster Slower
Block Block

A Simulink simulation does not execute in real time, which means that it is not bound
by real-time constraints. The simulation waits for, or moves ahead to, whatever tasks
are required to complete simulation flow. The actual time interval between sample time
steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate for the fact
that execution of the slower block might span more than one execution period of the
faster block. This means that the outputs of the faster block can change before the slower
block has finished computing its outputs. The next figure shows a situation in which this
problem arises (T = sample time). Note that lower priority tasks are preempted by higher
priority tasks before completion.

A

L

e LOCE=ED AL O=Eh (¢
T

T=1s —®» T=2s
Faster Slower 1 Sec A 5 é A
Block Task

T=1s @ T=1s @ T=1s @

Time >

=1s @

@ The faster task (T=1s) completes.
@ Higher priority preemption occurs.

@ The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

In the above figure, the faster block executes a second time before the slower block has
completed execution. This can cause unpredictable results because the input data to the
slow task is changing. Data might not maintain its integrity in this situation.
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To avoid this situation, the Simulink engine must hold the outputs of the 1 second
(faster) block until the 2 second (slower) block finishes executing. The way to accomplish
this is by inserting a Rate Transition block between the 1 second and 2 second blocks.
The input to the slower block does not change during its execution, maintaining data
integrity.

—
— T=1s —pTin=1Tout=2—» T=2s
—_—

Faster Block Rate Transition Slower Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but with the
priority of the faster block.

t0 2
%aiﬁc T T=2s I T=2s
/7 /"

t0 t1 2 t3

A A A V'
1 Sec _ _ _ _
Task T=1s| RT T=1s T=1s| RT T=1s

Time D>

When you add a Rate Transition block, the block executes before the 2 second block (its
priority is higher) and its output value is held constant while the 2 second block executes
(it executes at the slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine again
computes the output of the driving block first. During sample intervals where only the
faster block executes, the simulation progresses more rapidly.
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The next figure shows the execution sequence.

—
—»| T=2s » T=1s
—
Slower Faster
Block Block

As you can see from the preceding figures, the Simulink engine can simulate models with
multiple sample rates in an efficient manner. However, a Simulink simulation does not
operate in real time.

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code assigns the
faster block a higher priority than the slower block. This means the faster block is
executed before the slower block, which requires special care to avoid incorrect results.

2 Sec

L

T=2s P T=1s
Block Faster
Block

Task

1 Sec

Task

t0 t2
A
T=2s \ T=2s j \
t0 t2 t3 t4
A A V'S V' s
T T=1s T=1s T=1s

v

Time

@ The faster block executes a second time prior
to the completion of the slower block.

@ The faster block executes before the slower block.

This timing diagram illustrates two problems:

Execution of the slower block is split over more than one faster block interval. In
this case the faster task executes a second time before the slower task has completed
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2 Sec
Task

1 Sec
Task
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execution. This means the inputs to the faster task can have incorrect values some of

the time.

+ The faster block executes before the slower block (which is backward from the way
a Simulink simulation operates). In this case, the 1 second block executes first; but
the inputs to the faster task have not been computed. This can cause unpredictable

results.

To eliminate these problems, you must insert a Rate Transition block between the slower

and faster blocks.
—>
—»| T=2s —P{Tin=2 Tout=1p—p| T=1s
—
Slower Rate Transition Faster
Block Block

It is assumed that the Rate Transition block is used in its default (protected/

deterministic) mode.

The next figure shows the timing sequence that results with the added Rate Transition

block.

@\

o T=2s upFé;te o T=2s

-/

RT
update

output T=1s T=1s @

v

Time
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Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower rate (2
seconds). The output of the Rate Transition block feeds the 1 second task blocks.

2 The Rate Transition update uses the output of the 2 second task to update its
internal state.

3 The Rate Transition output in the 1 second task uses the state of the Rate Transition
that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating at a slower
rate and at the priority of the slower block. The input to the Rate Transition block (which
is the output of the slower block) is read after the slower block completes executing.

The second problem is alleviated because the Rate Transition block executes at a slower
rate and its output does not change during the computation of the faster block it is
driving. The output portion of a Rate Transition block is executed at the sample rate of
the slower block, but with the priority of the faster block. Since the Rate Transition block
drives the faster block and has effectively the same priority, it is executed before the
faster block.

Note This use of the Rate Transition block changes the model. The output of the slower

block is now delayed by one time step compared to the output without a Rate Transition
block.

More About

. “Time-Based Scheduling and Code Generation” on page 4-2
. “Sample Times in Subsystems”

. “Sample Times in Systems”

. “Modeling for Multitasking Execution” on page 4-12
. “Configure Time-Based Scheduling” on page 4-34
. “Resolve Rate Transitions”

. “Time-Based Scheduling Example Models” on page 4-36
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For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configure Start and Stop Times

The Stop time must be greater than or equal to the Start time. If the stop time is
zero, or if the total simulation time (Stop minus Start) is less than zero, the generated
program runs for one step. If the stop time is set to inTF, the generated program runs
indefinitely.

When using the GRT or ERT targets, you can override the stop time when running a

generated program from the Microsoft Windows command prompt or UNIX! command
line. To override the stop time that was set during code generation, use the —tFf switch.

model -tf n
The program runs for n seconds. If n = inf, the program runs indefinitely.

Certain blocks have a dependency on absolute time. If you are designing a program that
is intended to run indefinitely (Stop time = inf), and your generated code does not use
the rtModel data structure (that is, it uses simstructs instead), you must not use
these blocks. See “Absolute Time Limitations” on page 3-12 for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to run, you can
prevent the timers from overflowing and force the use of optimal word sizes by specifying
the Application lifespan (days) parameter on the Optimization pane. See “Control
Memory Allocation for Time Counters” on page 31-15 for details.

Configure the Solver Type

For code generation, you must configure a model to use a fixed-step solver for all targets
except the S-function and RSim targets. You can configure the S-function and RSim
targets with a fixed-step or variable-step solver.

1. UNIX is a registered trademark of The Open Group in the United States and other countries.
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Configure the Tasking Mode

The code generator supports both single-tasking and multitasking modes for periodic
sample times. See “Time-Based Scheduling and Code Generation” on page 4-2 for details.

More About

. “Time-Based Scheduling and Code Generation” on page 4-2
. “Sample Times in Subsystems”

. “Sample Times in Systems”

. “Time-Based Scheduling Example Models” on page 4-36
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Optimize Memory Usage for Time Counters

This example shows how to optimize the amount of memory that the code generator
allocates for time counters. The example optimizes the memory that stores elapsed time,
the interval of time between two events.

The code generator represents time counters as unsigned integers. The word size of

time counters is based on the setting of the model configuration parameter Application
lifespan (days), which specifies the expected maximum duration of time the application
runs. You can use this parameter to prevent time counter overflows. The default size is
64 Dbits.

The number of bits that a time counter uses depends on the setting of the Application
lifespan (days) parameter. For example, if a time counter increments at a rate of 1 kHz,
to avoid an overflow, the counter has the following number of bits:

+  Lifespan < 0.25 sec: 8 bits
+ Lifespan <1 min: 16 bits

+ Lifespan < 49 days: 32 bits
+ Lifespan > 50 days: 64 bits

A 64-bit time counter does not overflow for 590 million years.

Open Example Model

Open the example model rtwdemo_abstime.
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Fen-call l

Trigger()

551 is clocked at 1 kHz, and contains a discrete-time integrator that
@—h In1 . Outl 4h-® requires elapsed time to compute its output. However, a counter is not

In Out1 required to compute elapsed time since the trigger port "Sample time type
is set to 'pericdic.” Instead, time is inlined as 1 kHz.

551
In2 1
f 552 is clocked at 100 Hz. and contains a discrete-time integrator that

#In1 - Qutd —I—@ requires elapsed time to compute its output. Since the application life
Out3 span of the model is 1 day, a 32-bit counter is reqguired to compute
elapsed fime for 352

552
In3 1
1 553 is clocked at 0.5 Hz, and contains a discrete-time integrator that
»in1 . outt > @ requires elapsed time to compute _ils output.. Since_ the applicaticn life
Outs span of the model is 1 day, a 16-bit counter is required to compute
u elapsed fime for SS3.
553

Simulink Coder optimizes how counters are employed to measure absolute and

elapsed time:
Did you o Time is computed from unsigned integer counters.
know ... o Only tasks that require time are allocated a counter.
- o Elapsed time is computed by a subsystem if and only if
L ample a block in its hierarchy requires elapsed time.
{double-click) o Time is shared by all blocks within a triggered hierarchy.

Simulink Coder further optimizes counters based on the option "Application life
span,” whereby the number of bits used for a particular counter is optimized based on
how Iong the application will run.

Generate Code Using Generate Code Using
Simulink Coder Embedded Coder
(double-click) (double-click) Copyright 1924-2012 The MathWorks, Inc.

The model consists of three subsystems SS1, SS2, and SS3. On the Optimization tab,
the Application lifespan (days) parameter is set to the default, which is auto.

The three subsystems contain a discrete-time integrator that requires elapsed time as
input to compute its output value. The subsystems vary as follows:
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+ SS1 - Clocked at 1 kHz. Does not require a time counter. Sample time type
parameter for trigger port is set to periodic. Elapsed time is inlined as 0.001.

+ SS2 - Clocked at 100 Hz. Requires a time counter. Based on a lifespan of 1 day, a 32-
bit counter stores the elapsed time.

+ SS3 - Clocked at 0.5 Hz. Requires a time counter. Based on a lifespan of 1 day, a 16-
bit counter stores the elapsed time.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for the three subsystems appear red, green, and blue.
Triggered subsystems are blue-green.

Generate Code and Report
1. Create a temporary folder for the build and inspection process.

2. Configure the model for the code generator to use the GRT system target file and a
lifespan of inf days.

3. Build the model.

### Starting build procedure for model: rtwdemo_abstime
### Successftul completion of build procedure for model: rtwdemo_abstime

Review Generated Code

Open the generated source file rtwdemo_abstime.c.

struct tag_RTM_rtwdemo_abstime T {
const char_T *errorStatus;

/*

* Timing:

* The following substructure contains information regarding
* the timing information for the model.
*

/
struct {

uint32_T clockTickl;

uint32_T clockTickHl;

uint32_T clockTick2;

uint32_T clockTickH2;
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struct {
uintl6_T TID[3];
uintl6_T cLimit[3];
} TaskCounters;
} Timing;
}:

Four 32-bit unsigned integers, clockTickl , clockTickH1 , clockTick2 , and
clockTickH2 are counters for storing the elapsed time of subsystems SS2 and SS3.

Enable Optimization and Regenerate Code
1. Reconfigure the model to set the lifespan to 1 day.

2. Build the model.

### Starting build procedure for model: rtwdemo_abstime
### Successful completion of build procedure for model: rtwdemo_abstime

Review the Regenerated Code

struct tag_RTM_rtwdemo_abstime T {
const char_T *errorStatus;

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickl;
uintl6_T clockTick2;
struct {
uintl6_T TID[3];
uintl6_T cLimit[3];
} TaskCounters;
} Timing;
}:

The new setting for the Application lifespan (days) parameter instructs the code
generator to set aside less memory for the time counters. The regenerated code includes:
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* 32-bit unsigned integer, clockTickl, for storing the elapsed time of the task for SS2
* 16-bit unsigned integer, clockTick2, for storing the elapsed time of the task for SS3

Related Information

* “Optimization Pane: General”
* “Timers in Asynchronous Tasks”

* “Time-Based Scheduling and Code Generation”

Single-Rate Modeling (Bare Board, No OS)

This model shows the code generated for a single-rate discrete-time model configured for
a bare-board target (one with no operating system).

Open Example Model
Open the example model rtwdemo_srbb.

open_system("rtwdemo_srbb*")
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This model is configured to display sample-time colors upon
diagram update. Red represents the fastest discrete sample
time in the model, green represents the second fastest, and

Display Sampla

. i . Time Colors
yvellow represents mixed sample times. Click the yellow button {double-click)
to the left to update the diagram and show sample-time colors.
D »in1
In1_1s Out1
] In2
551 Sum
G,
Qut1
KTs
(2 —» ¥ in1
z-1
In2_1s
Integrator e ) @
#inz Out2
552

This model shows the code generated for a single-rate discrete-time model
configured for a bare-board target (one with no operating system). The model uses
one sample time. Inport block 1 and Inport block 2 both specify a 1-second sample
time, which is enforced by the "Periodic sample time constraint” option on the Solver
configuration page. To view the solver page, double-click the yellow button below.
To display the sample times in the model, double-click the yellow button above.

Generate Code Using Generate Code Using View Solver
Simulink Coder Embedded Coder Configuration
(double-click) (double-click) (double-click)

Caopyright 1984-2012 The MathWaorks, Inc.

The model uses one sample time. Inport block 1 and Inport block 2 both specify a 1-
second sample time, which is enforced by the Periodic sample time constraint option

4-41



4 Time-Based Scheduling in Simulink Coder

4-42

on the Solver configuration page. To view the solver page, double-click the corresponding
yellow button in the model. To display the sample times in the model, double-click the
corresponding yellow button in the model.

This model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Click the yellow button in the model
to update the diagram and show sample-time colors.

Multirate Modeling in Single-Tasking Mode (Bare Board, no OS)

This model shows the code generated for a multirate discrete-time model configured for
single-tasking on a bare-board target (one with no operating system).

Open Example Model
Open the example model rtwdemo_mrstbb.

open_system("rtwdemo_mrstbhb®)
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The model is configured to display sample-time colors upon
diagram update. Red represents the fastest discrete sample

Display Sample

fime in the model, green reprezents the second fastest, and Time Colors
yellow represents mixed sample times. Click the yvellow button (double-click)
to the right to update the diagram and show sample-time colors.
|: 1 } ™ in1
In1_1s Out1
™ In2
8551 Sum
Outl
KTs
(2 —» ¥ in1
z-1
In2_2s
Integrator e ) @
#inz Out2
552

This model shows the code generated for a multirate discrete-time

model configured for single-tasking on a bare-board target (one with no
operating system). The model contains two sample times. Inport block 1
and Inport block 2 specify 1-second and 2-second sample times,
respectively, which are enforced by the "Periodic sample time constraint”
option on the Solver configuration page. The solver is set for single-tasking
operation. Rate transition blocks are, therefore, not necessary between
blocks executing at different sample times because preemption will not occur.

Generate Code Using Generate Code Using View Solver
Simulink Coder Embedded Coder Configuration
(double-click) (double-click) (double-click)

Copyright 1984-2012 The MathWorks, Inc.
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The model contains two sample times. Inport block 1 and Inport block 2 specify 1-second
and 2-second sample times, respectively, which are enforced by the Periodic sample
time constraint option on the Solver configuration page. The solver is set for single-
tasking operation. Rate transition blocks are, therefore, not necessary between blocks
executing at different sample times because preemption will not occur.

The model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Double-click the yellow button in the
model to update the diagram and show sample-time colors.

Multirate Modeling in Multitasking Mode (Bare Board, no OS)

This model shows the code generated for a multirate discrete-time model configured for a
multitasking bare-board target (one with no operating system).

Open Example Model
Open the example model rtwdemo_mrmtbb.

open_system("rtwdemo_mrmtbb*)
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The model is configured to display sample-time colors upon

t!iagrgm update. Red represents the fastest discrete sample Display Sample
time in the model, green represents the second fastest, and Time Colors.
yellow represents mixed sample times. Click the yellow button {double-click)

to the right to update the diagram and show sample-time colors.

13 # In1
In1_1s Out1
- # In2
851 Sum
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In2_2s
Integrator RateTransition Outt n
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This model shows the code generated for a multirate discrete-time model

configured for a multitasking bare-board target (one with no operating system). The
model contains two sample times. Inport block 1 and Inport block 2 specify 1-second
and 2-second sample times, respectively, which are enforced by the "Perniodic
sample time constraint” option on the Solver configuration page. The solver is set for
multitasking operation, which means a rate transition block is required to ensure that
data integrity is enforced when the 1-second task preempts the 2-second task.
Proper rate transitions are always enforced by Simulink and Simulink Coder.

This model specifies an explicit rate transition block. Alternatively, this block could
be automatically inserted by Simulink using the "Automatically handle data transfers
between tasks" option on the Solver configuration page.

Generate Code Using Generate Code Using View Solver
Simulink Coder Embedded Coder Configuration
{double-click) {double-click) {double-click)

Copyright 1994-2012 The Math\Works, Inc.
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Explore Example Model

The model contains two sample times. Inport block 1 and Inport block 2 specify 1-

second and 2-second sample times, respectively, which are enforced by the Periodic
sample time constraint option on the Solver configuration page. The solver is set

for multitasking operation, which means a rate transition block is required to ensure
that data integrity is enforced when the 1-second task preempts the 2-second task.
Proper rate transitions are always enforced by Simulink and Simulink Coder. This model
specifies an explicit rate transition block. Alternatively, this block could be automatically
inserted by Simulink using the Automatically handle data transfers between tasks
option on the Solver configuration page.

The model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Click the yellow button to the right to
update the diagram and show sample-time colors.

Data Transfer Assumptions
Basis of operation for data transfers between tasks:

Data transitions occur between a single reading task and a single writing task.
2 A read or write of a byte sized variable is atomic.

3 When two tasks interact through a data transition, only one of them can preempt the
other.

4  For periodic tasks, the faster rate task has higher priority than the slower rate task;
the faster rate task always preempts the slower rate task.

5 All tasks run on a single processor. Time slicing is not allowed.

6 Processes do not crash/restart (especially while data is being transferred between
tasks)

Trade Determinism and Data Integrity to Improve System Performance

This model shows the differences in the operation modes of the Rate Transition block
when used in a multirate, multitasking model. The flexible options for the Rate
Transition block allow you to select the mode that is best suited for your application. You
can trade levels of determinism and data integrity to improve system performance.
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Rate Transition Block Modes of Operation

Ensure data integrity and determinism (DetAndInteg) : Data is transferred such
that all data bytes for the signal (including all elements of a wide signal) are from the
same time step. Additionally, it is ensured that the relative sample time (delay) from
which the data is transferred from one rate to another is always the same. Only ANSI-C
code is used, no target specific 'critical section' protection is needed.

Ensure integrity (IntegOnly) : Data is transferred such that all data bytes for the
signal (including all elements of a wide signal) are from the same time step. However,
from one transfer of data to the next, the relative sample time (delay) for which the data
is transferred can vary. In this mode, the code to read/write the data is run more often
than in the DetandInt mode. In the worst case, the delay is equivalent to the DetandInt
mode, but the delay can be less which is important is some applications. Also, this mode
support data transfers to/from asynchronous rates which the DetandInt mode cannot
support. Only ANSI-C code is used, no target specific 'critical section' protection is
needed.

No data consistency operations are performed (None) : For this case, the Rate
Transition block does not generated code. This mode is acceptable in some application
where atomic access of scalar data types is guaranteed and when the relative temporal
values of the data is not important. This mode does not introduce any delay.

Data Transfer Assumptions
Basis of operation for data transfers between tasks:

+ Data transitions occur between a single reading task and a single writing task.
* A read or write of a byte sized variable is atomic.

*  When two tasks interact through a data transition, only one of them can preempt the
other.

*  For periodic tasks, the faster rate task has higher priority than the slower rate task;
the faster rate task always preempts the slower rate task.

+ All tasks run on a single processor. Time slicing is not allowed.

*  Processes do not crash/restart (especially while data is being transferred between
tasks)

Model rtwdemo_ratetrans

open_system("rtwdemo_ratetrans®)
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Copyright 1984-2012 The MathWorks, Inc.
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This model shows the differences in the operation modes of the Rate Transition

block when used in a multirate, multitasking model. The flexible options for the Rate
Transition block allow you to select the mode that is best suited for your application.
You can trade levels of determinism and data integrity to improve system performance.

Display Sample
Time Colors
(double-click)
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Model rtwdemo_ratetrans shows the differences in the operation modes of the
following Rate Transition blocks.

Rate Transition block DetAnd IntegF2S

Determinism and data integrity (fast to slow transition):

The block output is used as a persistent data buffer.
Data is written to output at slower rate but done during the faster rate context

Data as seen by the slower rate is always the value when both the faster and slower
rate last executed. Any subsequent steps by the faster rate (and associated data
updates) while the slower rate is running are not seen by the slower rate.

Rate Transition block DetAnd IntegS2F

Determinism and data integrity (slow to fast transition):

Uses two persistent data buffers, an internal buffer and the blocks output.

The internal buffer is copied to the output at the slower rate but done during the
faster rate context.

The internal buffer is written at the slower rate and during the slower rate context.

The data that Fast rate sees is always delayed, 1.e. data is from the previous step of
the slow rate code.

Rate Transition block IntegonlyF2S

Data integrity only (fast to slow transition):

The block output is used as a persistent data buffer.

Data is written to buffer during the faster rate context if a flag indicates it not in the
process of being read.

The flag is set and data is copied from the buffer to output at the slow rate, the flag is
then cleared. This is an additional copy as compared to the deterministic case.

Data as seen by the slower rate can be from a more recent step of the faster rate than
from when the slower rate and faster rate both executed.

Rate Transition block IntegOnlyS2F

Data integrity only (slow to fast transition):

Uses two persistent data buffers, both are internal buffers.
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* One of the 2 buffers is always copied to the output at faster rate.

* One of the 2 buffers is written at the slower rate and during the slower rate context,
then the active buffer is switched.

* The data as seen by the faster rate can be more recent than for the deterministic case.
Specifically, when both the slower and faster rate have their hits, the faster rate will
see a previous value from the slower rate. But, subsequent steps for the faster rate
may see an updated value (when the slower rate updates the non-active buffer and
switches the active buffer flag.

Rate Transition block NoneF2S

No code is generated for the Rate Transition block when determinism and data integrity
is waived.

Rate Transition block NoneS2F

No code is generated for the Rate Transition block when determinism and data integrity
1s waived.

bdclose("rtwdemo_ratetrans®);

More About

. “Time-Based Scheduling and Code Generation” on page 4-2
. “Modeling for Single-Tasking Execution” on page 4-8
. “Modeling for Multitasking Execution” on page 4-12
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“Asynchronous Events” on page 5-2
“Generate Interrupt Service Routines” on page 5-6
“Spawn and Synchronize Execution of RTOS Task” on page 5-14

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page
5-30

“Rate Transitions and Asynchronous Blocks” on page 5-37
“Timers in Asynchronous Tasks” on page 5-42

“Create a Customized Asynchronous Library” on page 5-45
“Import Asynchronous Event Data for Simulation” on page 5-53

“Asynchronous Support Limitations” on page 5-57
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Asynchronous Events

Asynchronous Support

Normally, you time models from which you plan to generate code from a periodic
interrupt source (for example, a hardware timer). Blocks in a periodically clocked
single-rate model run at a timer interrupt rate (the base rate of the model). Blocks in a
periodically clocked multirate model run at the base rate or at multiples of that rate.

Many systems must also support execution of blocks in response to events that are
asynchronous with respect to the periodic timing source of the system. For example,

a peripheral device might signal completion of an input operation by generating an
interrupt. The system must service such interrupts, for example, by acquiring data from
the interrupting device.

This chapter explains how to use blocks to model and generate code for asynchronous
event handling, including servicing of hardware-generated interrupts, maintenance of
timers, asynchronous read and write operations, and spawning of asynchronous tasks
under a real-time operating system (RTOS). This block library demonstrates integration

with an example RTOS (VxWorks®™). Although the blocks target an example RTOS, this
chapter provides source code analysis and other information you can use to develop

blocks that support asynchronous event handling for an alternative target RTOS.?

Block Library for Calls to an Example Real-Time Operating System

The next figure shows the blocks in the vxlibl block library.

. T
WSimIRQ  IRGMp N temy P
Async Interrupt Task Sync
| |

AP AP
111111 111111
Proteced RT Unprotected RT

2. VxWorks is a registered trademark of Wind River® Systems, Inc.

5-2



Asynchronous Events

The key blocks in the library are the Async Interrupt and Task Sync blocks. These blocks
are targeted for an example RTOS (VxWorks). You can use them, with modification, to
support your RTOS applications.

Note: You can use the blocks in the vxlibl on page 5-2 library (Async Interrupt
and Task Sync) for simulation and code generation. These blocks provide starting point
examples to help you develop custom blocks for your target environment.

To implement asynchronous support for an RTOS other than the example RTOS, use the
guidelines and example code are provided to help you adapt the vxl1ib1 library blocks
to target your RTOS. This topic is discussed in “Create a Customized Asynchronous
Library” on page 5-45.

The vx1ibl library includes blocks you can use to

* Generate interrupt-level code — Async Interrupt block
*  Spawn an RTOS task that calls a function call subsystem — Task Sync block

+ Enable data integrity when transferring data between blocks running as different
tasks — Protected RT block

+ Use an unprotected/nondeterministic mode when transferring data between blocks
running as different tasks — Unprotected RT block

The use of protected and unprotected Rate Transition blocks in asynchronous contexts is
discussed in “Rate Transitions and Asynchronous Blocks” on page 5-37. For general

information on rate transitions, see “Time-Based Scheduling and Code Generation” on
page 4-2.

Access the Block Library for RTOS Integration

To access the example RTOS (VxWorks) block library, enter the MATLAB command
vxlibl.

Generate Code Using Library Blocks for RTOS Integration

To generate an example RTOS compatible application from a model containing vxlibl
library blocks, use the following configuration parameter values for your model.

5-3



5 Event-Based Scheduling in Simulink Coder

5-4

Select system target file ert.tlc (requires an Embedded Coder license) from
the browse menu for the Code Generation > System target file parameter
(SystemTargetFile).

Enable the Code Generation > Generate code only parameter (GenCodeOnly).

Enable the All Parameters > Generate an example main program parameter
(GenerateSampleERTMain).

Select VxWorksExample from the menu for the All Parameters > Target
operating system parameter (Target0S).

Examples and Additional Information

Additional information relevant to the topics in this chapter can be found in

The rtwdemo_async model, which uses the tornado.tlc system target file and
vxlibl block library. To open this example, type rtwdemo_async at the MATLAB
command prompt.

The rtwdemo_async_mdlreftop model, which uses the tornado.tlc
system target file and vx1ibl block library. To open this example, type
rtwdemo_async_mdlreftop at the MATLAB command prompt.

“Time-Based Scheduling and Code Generation” on page 4-2, discusses general
multitasking and rate transition issues for periodic models.

The Embedded Coder documentation discusses the ert.tlc system target file,
including task execution and scheduling.

For detailed information about the system calls to the example RTOS (VxWorks)
mentioned in this chapter, see VxWorks system documentation on the Wind River
website.

More About

“Time-Based Scheduling and Code Generation” on page 4-2
“Generate Interrupt Service Routines” on page 5-6
“Spawn and Synchronize Execution of RTOS Task” on page 5-14

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page
5-30

“Timers in Asynchronous Tasks” on page 5-42

“Import Asynchronous Event Data for Simulation” on page 5-53
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“Rate Transitions and Asynchronous Blocks” on page 5-37
“Create a Customized Asynchronous Library” on page 5-45

“Asynchronous Support Limitations” on page 5-57
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Generate Interrupt Service Routines

To generate an interrupt service routine (ISR) associated with a specific VME interrupt
level for the example RTOS (VxWorks), use the Async Interrupt block. The Async
Interrupt block enables the specified interrupt level and installs an ISR that calls a
connected function call subsystem.

You can also use the Async Interrupt block in a simulation. It provides an input port that
can be enabled and connected to a simulated interrupt source.

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vx1ibl on page 5-2 library. These blocks provide
starting point examples to help you develop custom blocks for your target environment.

Connecting the Async Interrupt Block

To generate an ISR, connect an output of the Async Interrupt block to the control input of

+ A function call subsystem
* The input of a Task Sync block
* The input to a Stateflow chart configured for a function call input event

The next figure shows an Async Interrupt block configured to service two interrupt
sources. The outputs (signal width 2) are connected to two function call subsystems.

20 Hz
Sim
Out SimIRQ IRQN
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Controller

El_l—b f-call))
" out » (2 )
[ [m OutZ
Counti Unprotected AT2
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Unprotected RT1

o
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Requirements and Restrictions

Note the following requirements and restrictions:

*  The Async Interrupt block supports VME interrupts 1 through 7.

+  The Async Interrupt block uses the following system calls to the example RTOS
(VxWorks):

sysintEnable

+ syslIntDisable
intConnect

+ intLock

+ intUnlock
tickGet

Performance Considerations

Execution of large subsystems at interrupt level can have a significant impact on
interrupt response time for interrupts of equal and lower priority in the system. As
a general rule, it is best to keep ISRs as short as possible. Connect only function call
subsystems that contain a small number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to synchronize the
execution of the function call subsystem to a RTOS task. The Task Sync block is placed
between the Async Interrupt block and the function call subsystem. The Async Interrupt
block then installs the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately from interrupt
level. The task is then scheduled and run by the example RTOS (VxWorks). See “Spawn
and Synchronize Execution of RTOS Task” on page 5-14 for more information.

Using the Async Interrupt Block in Simulation and Code Generation

This section describes a dual-model approach to the development and implementation
of real-time systems that include ISRs. In this approach, you develop one model that
includes a plant and a controller for simulation, and another model that only includes
the controller for code generation. Using a Simulink library, you can implement changes
to both models simultaneously. The next figure shows how changes made to the plant or
controller, both of which are in a library, are propagated to the models.
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o Model _
| Plant | |Controller | ant (for simulation)
Library: Changes made here Interrupt
affect both models. Block
_ (Simulation v
input enabled) Controller
Interrupt
Block Model
Simulink Coder library Interrupt (for code generation)
> Block l
Controller

Dual-Model Use of Async Interrupt Block for Simulation and Code Generation

A single-model approach is also possible. In this approach, the Plant component of
the model is active only in simulation. During code generation, the Plant components
are effectively switched out of the system and code is generated only for the interrupt
block and controller parts of the model. For an example of this approach, see the
rtwdemo_async model.

Dual-Model Approach: Simulation
The following block diagram shows a simple model that illustrates the dual-model

approach to modeling. During simulation, the Pulse Generator blocks provide simulated
interrupt signals.
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The simulated interrupt signals are routed through the Async Interrupt block's input
port. Upon receiving a simulated interrupt, the block calls the connected subsystem.

During simulation, subsystems connected to Async Interrupt block outputs are executed
in order of their priority in the example RTOS (VxWorks). In the event that two or

more interrupt signals occur simultaneously, the Async Interrupt block executes the
downstream systems in the order specified by their interrupt levels (level 7 gets the
highest priority). The first input element maps to the first output element.

You can also use the Async Interrupt block in a simulation without enabling the
simulation input. In such a case, the Async Interrupt block inherits the base rate of the
model and calls the connected subsystems in order of their priorities in the RTOS. (In
this case, the Async Interrupt block behaves as if all inputs received a 1 simultaneously.)

Dual-Model Approach: Code Generation

In the generated code for the sample model,

* Ground blocks provide input signals to the Environment Controller block

* The Async Interrupt block does not use its simulation input

The Ground blocks drive control input of the Environment Controller block, so code is
not generated for that signal path. The code generator does not produce code for blocks

that drive the simulation control input to the Environment Controller block because that
path is not selected during code generation. However, the sample times of driving blocks
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for the simulation input to the Environment Controller block contribute to the sample
times supported in the generated code. To avoid including unnecessary sample times in

the generated code, use the sample times of the blocks driving the simulation input in the
model where generated code is intended.

¥
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Standalone functions are installed as ISRs and the interrupt vector table is as follows:

Offset
192 &isr_numl_vecl92()
193 &isr_num2_vecl93()

Consider the code generated from this model, assuming that the Async Interrupt block
parameters are configured as shown in the next figure.
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E! Function Block Parameters: Async Interrupt

—4avwarks Intermupt Block [mask] [link)
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WHAE interupt number(s):

B
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Initialization Code

In the generated code, the Async Interrupt block installs the code in the Subsystem

blocks as interrupt service routines. The interrupt vectors for IRQ1 and IRQ2 are stored
at locations 192 and 193 relative to the base of the interrupt vector table, as specified by
the VME interrupt vector offset(s) parameter.

Installing an ISR requires two RTOS (VxWorks) calls, int_connect and
sysInt_Enable. The Async Interrupt block inserts these calls in the
model_initialize function, as shown in the following code excerpt.

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Connect and enable ISR function:

iT( intConnect(INUM_TO_IVEC(192),

3
sysintEnable(1);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Connect and enable ISR function:

iT( intConnect(INUM_TO_IVEC(193),
{

}

printf(""intConnect failed for ISR 2.\n");

isr_numl_vecl92 */
isr_numl_vecl192, 0) I= O0K) {
printf(""intConnect failed for ISR 1.\n");

isr_num2_vecl93 */
isr_num2_vecl93, 0) I!= 0K)
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sysintEnable(2);

The hardware that generates the interrupt is not configured by the Async Interrupt
block. Typically, the interrupt source is a VME I/0O board, which generates interrupts for
specific events (for example, end of A/D conversion). The VME interrupt level and vector
are set up in registers or by using jumpers on the board. You can use the mdIStart
routine of a user-written device driver (S-function) to set up the registers and enable
interrupt generation on the board. You must match the interrupt level and vector
specified in the Async Interrupt block dialog to the level and vector set up on the I/O
board.

Generated ISR Code
The actual ISR generated for IRQ1 in the RTOS (VxWorks) is listed below.
/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */

void isr_numl_vecl92(void)

{
int_T lock;
FP_CONTEXT context;
/* Use tickGet() as a portable tick counter example.
A much higher resolution can be achieved with a
hardware counter */
Async_Code_M->Timing.clockTick2 = tickGet();
/* disable interrupts (system is configured as non-ive) */
lock = intLock();
/* save floating point context */
fppSave(&context);
/* Call the system: <Root>/Subsystem A */
Count(0, 0);
/* restore floating point context */
fppRestore(&context);
/* re-enable interrupts */
intUnlock(lock);
}

There are several features of the ISR that should be noted:

5-12



Generate Inferrupt Service Routines

Because of the setting of the Preemption Flag(s) parameter, this ISR is locked;
that is, it cannot be preempted by a higher priority interrupt. The ISR is locked
and unlocked in the example RTOS (VxWorks) by the int_lock and int_unlock
functions.

The connected subsystem, Count, is called from within the ISR.

The Count function executes algorithmic (model) code. Therefore, the floating-point
context 1s saved and restored across the call to Count.

The ISR maintains its own absolute time counter, which is distinct from other
periodic base rate or subrate counters in the system. Timing data is maintained for
the use of any blocks executed within the ISR that require absolute or elapsed time.

See “Timers in Asynchronous Tasks” on page 5-42 for details.

Model Termination Code

The model's termination function disables the interrupts in the RTOS (VxWorks):

/* Model terminate function */
void Async_Code_terminate(void)

{
/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_numl_vecl92 */
sysintDisable(l);
/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_num2_vecl93 */
sysintDisable(2);

}

More About

“Spawn and Synchronize Execution of RTOS Task” on page 5-14

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page
5-30

“Import Asynchronous Event Data for Simulation” on page 5-53

“Rate Transitions and Asynchronous Blocks” on page 5-37
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Spawn and Synchronize Execution of RTOS Task

This example shows how to simulate and generate code for asynchronous events on
a multitasking real-time operating system (VxWorks®). The model shows different
techniques for handling asynchronous events depending on the size of the triggered
subsystems.

About the Example Model

Open the example model rtwdemo_async.
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This model shows how to simulate and generate code for asynchronous events on a real-time

multitasking system. This model contains two asynchronously executed subsystems, "Count" and
"Algorithm." "Count” is executed at interrupt level, whereas "Algorithm" is executed in an asynchronous
task. The code generated for these blocks is specifically tailored for the VxWorks operating system.
However, you can modify the Async Interrupt and Task Sync blocks to generated code specific to your
environment whether you are using an operating system or not.

Display Sample
Time Colors
(double-click)

Generate Code Using Generate Code Using
Simulink Coder Embedded Coder
(double-click) (double-click)

Copyright 1894-2012 The MathWorks, Inc.

The model simulates an interrupt source and includes an Async Interrupt block, a Task
Sync block, function-call subsystems Count and Algorithm, and Rate Transition blocks.
The Async Interrupt block creates two Versa Module Eurocard (VME) interrupt service
routines (ISRs) that pass interrupt signals to subsystem Count and the Task Sync block.
You can place an Async Interrupt block between a simulated interrupt source and one of

the following:
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*  Function call subsystem
* Task Sync block
+ A Stateflow® chart configured for a function call input event

+ A referenced model with an Inport block that connects to one of the preceding model
elements

The Async Interrupt and Task Sync blocks enable the subsystems to execute
asynchronously.

Count represents a simple interrupt service routine (ISR) that executes at interrupt
level. It is best to keep ISRs as simple as possible. This subsystem includes only a
Discrete-Time Integrator block.

Algorithmincludes more substance. It includes multiple blocks and produces two
output values. Execution of larger subsystems at interrupt level can significantly impact
response time for interrupts of equal and lower priority in the system. A better solution
for larger subsystems is to use the Task Sync block to represent the ISR for the function-
call subsystem.

The Async Interrupt block generates calls to ISRs. Place the block between a simulated
interrupt source and one of the following:

*  Function call subsystem
* Task Sync block

+ A Stateflow® chart configured for a function call input event

For each specified interrupt level, the block generates a Versa Module Eurocard (VME)
ISR that executes the connected subsystem, Task Sync block, or chart.

In the example model, the Async Interrupt block is configured for VME interrupts 1

and 2, by using interrupt vector offsets 192 and 193. Interrupt 1 connects directly to
subsystem Count. Interrupt 2 connects to a Task Sync block, which serves as the ISR for
Algorithm. Place a Task Sync block in one of the following locations:

* Between an Async Interrupt block and a function-call subsystem or Stateflow® chart.

+ At the output port of a Stateflow® chart that has an event, Output to Simulink,
that you configure as a function call.

In the example model, the Task Sync block is between the Async Interrupt block and
function-call subsystem Algorithm. The Task Sync block is configured with the task
name Task(), a priority of 50, a stack size of 8192, and data transfers of the task
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synchronized with the caller task. The spawned task uses a semaphore to synchronize
task execution. The Async Interrupt block triggers a release of the task semaphore.

Four Rate Transition blocks handle data transfers between ports that operate at
different rates. In two instances, Protected Rate Transition blocks protect data transfers
(prevent them from being preempted and corrupted). In the other two instances,
Unprotected Rate Transition blocks introduce no special behavior. Their presence
informs Simulink® of a rate transition.

The code generated for the Async Interrupt and Task Sync blocks is tailored for the
example RTOS (VxWorks®). However, you can modify the blocks to generate code specific
to your run-time environment.

Data Transfer Assumptions

* Data transfers occur between one reading task and one writing task.
* A read or write operation on a byte-size variable is atomic.
*  When two tasks interact, only one can preempt the other.

*  For periodic tasks, the task with the faster rate has higher priority than the task with
the slower rate. The task with the faster rate preempts the tasks with slower rates.

* Tasks run on a single processor. Time slicing is not allowed.

*  Processes do not stop and restart, especially while data is being transferred between
tasks.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for input and output appear red and green, respectively.
Constants are reddish-blue. Asynchronous interrupts and tasks are purple. The Rate
Transition Blocks, which are a hybrid rate (their input and output sample times can
differ), are yellow.

Generate Code and Report

Generate code and a code generation report for the model. Generated code for the Async
Interrupt and Task Sync blocks is for the example RTOS (VxWorks®). However, you can
modify the blocks to generate code for another run-time environment.

1. Create a temporary folder for the build and inspection process.

2. Build the model.
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### Starting build procedure for model: rtwdemo_async
Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

### Wrapping unrecognized make command (angle brackets added)

it <make>

### in default batch file

### Successful completion of code generation for model: rtwdemo_async

Review Initialization Code
Open the generated source file rtwdemo_async.c. The initialization code:

1. Creates and initializes the synchronization semaphore TaskO_semaphore.

*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID = semBCreate(SEM_Q PRIORITY,
SEM_EMPTY);

if (rtwdemo_async_DW.SFunction_PWORK.SemID == NULL) {
printf(*"'semBCreate call failed for block TaskO.\n");

’

}
2. Spawns task taskO and assigns the task priority 50.

rtwdemo_async_DW.SFunction_IWORK.TaskID = taskSpawn(*'Task0",
50.0,
VX_FP_TASK,
8192.0,
(FUNCPTR)TaskoO,
o, o, o, 0, 0o, 0, 0,0, 0, 0);

ifT (rtwdemo_async_DW.SFunction_IWORK.TaskID == ERROR) {
printf(*"taskSpawn call failed for block TaskO0.\n");

¥

. Connects and enables ISR isr_numl_vec192 for interrupt 1 and ISR
sr_num2_vec193 for interrupt 2.

[_TIeV]

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */

/* Connect and enable ISR function: isr_numl vecl92 */

if (intConnect(INUM_TO_IVEC(192), isr_numl_vecl92, 0) != OK) {
printf("intConnect failed for ISR 1.\n");

}

sysintEnable(1);
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/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */

/* Connect and enable ISR function: isr_num2_vecl93 */

if (intConnect(INUM_TO_IVEC(193), isr_num2_vecl93, 0) != OK) {
printf("intConnect failed for ISR 2.\n");

}

sysintEnable(2);

/* InitializeConditions for RateTransition: "<Root>/Protected RT1" */
memset(&rtwdemo_async_DW.ProtectedRT1l_Buffer[0], 0, 60U * sizeof(real_T));

/* InitializeConditions for RateTransition: “<Root>/Protected RT2" */
memset(&rtwdemo_async_DW.ProtectedRT2_Buffer[0], 0, 60U * sizeof(real_T));

/* Systemlnitialize for S-Function (vxinterruptl): "<Root>/Async Interrupt® Incorpor:
* Systemlnitialize for SubSystem: "<Root>/Count®

*/

/* System initialize for function-call system: “<Root>/Count® */
rtwdemo_async_DW.Count_PREV_T = rtwdemo_async_M->Timing.clockTick2;

/* InitializeConditions for Discretelntegrator: "<S2>/Integrator® */
rtwdemo_async_DW. Integrator_DSTATE_I = 0.0;

/* Systemlnitialize for Outport: “<Root>/0utl® incorporates:
* Systemlnitialize for Outport: "<S2>/0ut”

*/

rtwdemo_async_Y.Outl = 0.0;

/* Systemlnitialize for S-Function (vxinterruptl): "<Root>/Async Interrupt® Incorpor:
* Systemlnitialize for SubSystem: "<S4>/Subsystem”
*/

/* System initialize for function-call system: "<S4>/Subsystem® */

/* Systemlnitialize for S-Function (vxtaskl): "<S5>/S-Function® incorporates:
* Systemlnitialize for SubSystem: "<Root>/Algorithm®

*/

/* System initialize for function-call system: “<Root>/Algorithm® */
rtwdemo_async_M->Timing.clockTick4 = rtwdemo_async_M->Timing.clockTick3;

rtwdemo_async_DW._Algorithm_PREV_T = rtwdemo_async_M->Timing.clockTick4;

/* InitializeConditions for Discretelntegrator: "<Sl1>/Integrator® */
rtwdemo_async_DW. Integrator_ DSTATE = 0.0;
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}

/* Systemlnitialize for Outport: °"<S1>/0utl” */
memset(&rtwdemo_async_B.Sum[0], 0, 60U * sizeof(real_T));

/* Systemlnitialize for Outport: “<Root>/0ut3® incorporates:
* Systemlnitialize for Outport: "<S1>/0ut2*

*/

rtwdemo_async_Y.Out3 = 0.0;

/* End of Systemlnitialize for S-Function (vxtaskl): "<S5>/S-Function® */

/* End of Systemlnitialize for S-Function (vxinterruptl): "<Root>/Async Interrupt”

/* Model terminate function */
static void rtwdemo_async_terminate(void)

{

}
/

*

*

*

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_numl_vecl92 */
sysintDisable(l);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_num2_vecl93 */
sysintDisable(2);

/* Terminate for S-Function (vxinterruptl): "<Root>/Async Interrupt”
*  Terminate for SubSystem: "<S4>/Subsystem®
*/

/* Termination for function-call system: "<S4>/Subsystem® */
/* VxWorks Task Block: "<S5>/S-Function® (vxtaskl) */

/* Destroy task: Task0 */
taskDelete(rtwdemo_async_DW._SFunction_IWORK.TasklID);

incorporates:

/* End of Terminate for S-Function (vxinterruptl): “<Root>/Async Interrupt® */

Start of Classic call interface

*/

void MdIOutputs(int_T tid)

{

rtwdemo_async_output(tid);
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}

void MdlUpdate(int_T tid)

{
rtwdemo_async_update(tid);

}

void MdlInitializeSizes(void)

{
}

void MdlInitializeSampleTimes(void)

{
}

void MdlInitialize(void)

{
}

void MdIStart(void)
{

rtwdemo_async_initialize();

}

void MdITerminate(void)

{

rtwdemo_async_terminate();

}

/* Registration function */
RT_MODEL_rtwdemo_async_T *rtwdemo_async(void)

{

/* Registration code */

/* initialize non-finites */
rt_InitInfAndNaN(sizeof(real_T));

/* initialize real-time model */
(void) memset((void *)rtwdemo_async_ M, O,
sizeof(RT_MODEL_rtwdemo_async_T));

/* Initialize timing info */

{

int_ T *mdITsMap = rtwdemo_async_M->Timing.sampleTimeTaskIDArray;
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mdITsMap[0] = O
mdITsMap[1] = 1
rtwdemo_async_M->Timing.sampleTimeTaskIDPtr = (&mdITsMap[0]);
rtwdemo_async_M->Timing.sampleTimes =
(&rtwdemo_async_M->Timing.sampleTimesArray[0]);
rtwdemo_async_M->Timing.offsetTimes =
(&rtwdemo_async_M->Timing.offsetTimesArray[0]);

/* task periods */

rtwdemo_async_M->Timing.sampleTimes[0] (0.016666666666666666) ;

rtwdemo_async_M->Timing.sampleTimes[1] (0.05);
/* task offsets */

rtwdemo_async_M->Timing.offsetTimes[0] = (0.0);
rtwdemo_async_M->Timing.offsetTimes[1] = (0.0);

}

rtmSetTPtr(rtwdemo_async_M, &rtwdemo_async_M->Timing.tArray[0]):

{
int_T *mdISampleHits = rtwdemo_async_M->Timing.sampleHitArray;
int_T *mdIPerTaskSampleHits = rtwdemo_async_M->Timing.perTaskSampleHitsArray;
rtwdemo_async_M->Timing.perTaskSampleHits = (&mdlIPerTaskSampleHits[0]);
mdlSampleHits[0] = 1;
rtwdemo_async_M->Timing.sampleHits = (&mdlSampleHits[0]);

}

rtmSetTFinal (rtwdemo_async_M, 0.5);

rtwdemo_async_M->Timing.stepSize0 = 0.016666666666666666 ;
rtwdemo_async_M->Timing.stepSizel = 0.05;

rtwdemo_async_M->solverInfoPtr = (&rtwdemo_async_M->solverinfo);
rtwdemo_async_M->Timing.stepSize = (0.016666666666666666) ;
rtsiSetFixedStepSize(&rtwdemo_async_M->solverInfo, 0.016666666666666666) ;
rtsiSetSolverMode(&rtwdemo_async_M->solverInfo, SOLVER_MODE_MULTITASKING);

/* block 1/0 */

rtwdemo_async_M->blockl0 = ((void *) &rtwdemo_async_B);

(void) memset(((void *) &rtwdemo_async_B), O,
sizeof(B_rtwdemo_async_T));

/* states (dwork) */

rtwdemo_async_M->dwork = ((void *) &rtwdemo_async_DW);

(void) memset((void *)&rtwdemo_async DW, O,
sizeof(DW_rtwdemo_async_T));
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/* external inputs */
rtwdemo_async_M->inputs = (((void*)&rtwdemo_async_U));
(void)memset((void *)&rtwdemo_async_U, 0, sizeof(ExtU_rtwdemo_async_T));

/* external outputs */

rtwdemo_async_M->outputs = (&rtwdemo_async_Y);

(void) memset((void *)&rtwdemo_async_Y, O,
sizeof(ExtY_rtwdemo_async_T));

/* Initialize Sizes */

rtwdemo_async_M->Sizes._.numContStates = (0);/* Number of continuous states */
rtwdemo_async_M->Sizes.numY = (3); /* Number of model outputs */
rtwdemo_async_M->Sizes.numU = (60); /* Number of model inputs */
rtwdemo_async_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough *,
rtwdemo_async_M->Sizes.numSampTimes = (2);/* Number of sample times */
rtwdemo_async_M->Sizes_.numBlocks = (17);/* Number of blocks */
rtwdemo_async_M->Sizes_.numBlocklO = (4);/* Number of block outputs */

return rtwdemo_async_M;

¥

/* pu— *
* End of Classic call interface *
* pu— */

The order of these operations is important. Before the code generator enables the
interrupt that activates the task, it must spawn the task.

Review Task and Task Synchronization Code

In the generated source file rtwdemo_async.c, review the task and task
synchronization code.

The code generator produces the code for function TaskO from the Task Sync block. That
function includes a small amount of interrupt-level code and runs as an RTOS task.

The task waits in an infinite for loop until the system releases a synchronization
semaphore. If the system releases the semaphore, the function updates its task timer and
calls the code generated for the Algorithm subsystem.

In the example model, the Synchronize the data transfer of this task with the

caller task parameter for the Task Sync block is set. This parameter setting updates the
timer associated with the Task Sync block (rtM->Timing.clockTick2) with the value
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of the timer that the Async Interrupt block (rtM->Timing.clockTick3) maintains.
As a result, code for blocks within the Algorithm subsystem use timer values that are
based on the time of the most recent interrupt, rather than the most recent activation of
Tasko.

{
/* Wait for semaphore to be released by system: rtwdemo_async/Task Sync */
for (G5) {
it (semTake(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID,NO_WAIT) !I=
ERROR) {

logMsg(*'Rate for Task TaskO() too fast.\n",0,0,0,0,0,0);
#iT STOPONOVERRUN

logMsg(**Aborting real-time simulation.\n",0,0,0,0,0,0);
semGive(stopSem);
return(ERROR) ;

#endi

} else {
semTake(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemlID, WAIT_FOREVER);

}

/* Use the upstream clock tick counter for this Task. */
rtwdemo_async_M->Timing.clockTick4 = rtwdemo_async_M->Timing.clockTick3;

/* Call the system: "<Root>/Algorithm®™ */

{

{
int32_T tmp;

/* RateTransition: "<Root>/Protected RT1" */

tmp = rtwdemo_async_DW.ProtectedRT1_ActiveBufldx * 60;

memcpy (&rtwdemo_async_B.ProtectedRT1[0],
&rtwdemo_async_DW.ProtectedRT1_Buffer[tmp], 60U * sizeof(real_T));

/* Output and update for function-call system: "<Root>/Algorithm® */
{
real _T tmp;
int32. T 1;
rtwdemo_async_M->Timing.clockTick4 =
rtwdemo_async_M->Timing.clockTick3;
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rtwdemo_async_DW_.Algorithm ELAPS T =
rtwdemo_async_M->Timing.clockTick4 -
rtwdemo_async_DW.Algorithm_PREV_T;

rtwdemo_async_DW.Algorithm PREV_T = rtwdemo_async_M->Timing.clockTick4;

/* Outport: "<Root>/0ut3" incorporates:
* Discretelntegrator: "<S1>/Integrator”
*/
rtwdemo_async_Y.Out3 = rtwdemo_async_DW. Integrator_ DSTATE;

/* Sum: "<S1>/Sum® iIncorporates:
* Constant: "<S1>/0ffset”
*/
for (i = 0; 1 <60; i++) {
rtwdemo_async_B.Sum[i] = rtwdemo_async_B.ProtectedRT1[i] + 1.25;
}

/* End of Sum: "<S1>/Sum®" */

/* Sum: "<S1>/Suml* */
tmp = rtwdemo_async_B.Sum[0];
for (i = 0; 1 <59; i++) {
tmp += rtwdemo_async_B.Sum[i + 1];

}

/* Update for Discretelntegrator: "<Sl1>/Integrator® incorporates:

*  Sum: "<S1>/Suml-

*/

rtwdemo_async_DW. Integrator_DSTATE += 0.016666666666666666 * (real_T)
rtwdemo_async_DW.Algorithm ELAPS T * tmp;

int32_T i;

/* Update for RateTransition: "<Root>/Protected RT2" */
for (i = 0; 1 <60; i++) {
rtwdemo_async_DW.ProtectedRT2_Buffer[i +
(rtwdemo_async_DW_ProtectedRT2_ActiveBufldx == 0) * 60] =
rtwdemo_async_B.Sum[i];

}

rtwdemo_async_DW._.ProtectedRT2_ActiveBufldx = (int8_T)
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(rtwdemo_async_DW_ProtectedRT2_ActiveBufldx == 0);

/* End of Update for RateTransition: "<Root>/Protected RT2" */

}
¥
}
}

The code generator produces code for ISRs isr_numl_vecl192 and isr_num2_vec293.
ISR isr_num2_vec192:

* Disables interrupts.
+ Saves floating-point context.

+ Calls the code generated for the subsystem that connects to the referenced model
Inport block, which receives the interrupt.

* Restores floating-point context.

*  Reenables interrupts.

void isr_numl_vecl92(void)
{

int T lock;

FP_CONTEXT context;

/* Use tickGet() as a portable tick
counter example. A much higher resolution can
be achieved with a hardware counter */
rtwdemo_async_M->Timing.clockTick2 = tickGet();

/* disable interrupts (system is configured as non-preemptive) */
lock = intLock();

/* save floating point context */
fppSave(&context) ;

/* Call the system: “<Root>/Count® */
{
/* Output and update for function-call system: "<Root>/Count® */
rtwdemo_async_DW.Count_ELAPS T = rtwdemo_async_M->Timing.clockTick2 -
rtwdemo_async_DW.Count_PREV_T;
rtwdemo_async_DW.Count_PREV_T = rtwdemo_async_M->Timing.clockTick2;
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}

}

/* Outport: "<Root>/0utl® incorporates:

* Discretelntegrator: "<S2>/Integrator”

*/

rtwdemo_async_Y.Outl = rtwdemo_async_DW. Integrator DSTATE_I;

/* Update for Discretelntegrator: "<S2>/Integrator® */
rtwdemo_async_DW. Integrator_DSTATE_I1 += 0.016666666666666666 * (real_T)
rtwdemo_async_DW.Count_ELAPS T;

/* restore floating point context */
fppRestore(&context);

/* re-enable interrupts */
intUnlock(lock);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt” */

ISR isr_num2_vec293 maintains a timer that stores the tick count at the time that the
interrupt occurs. After updating the timer, the ISR releases the semaphore that activates
TaskO.

void isr_num2_vecl93(void)

{

}

/* Use tickGet() as a portable tick

counter example. A much higher resolution can
be achieved with a hardware counter */

rtwdemo_async_M->Timing.clockTick3 = tickGet();

/* Call the system: "<S4>/Subsystem® */

{

}

/* Output and update for function-call system: "<S4>/Subsystem® */

/* VxWorks Task Block: "<S5>/S-Function® (vxtaskl) */
/* Release semaphore for system task: TaskO */
semGive(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemlD);

/* VxWorks Task Block: "<S5>/S-Function® (vxtaskl) */

5-27



5 Event-Based Scheduling in Simulink Coder

5-28

Review Task Termination Code

The Task Sync block generates the following termination code.

static void rtwdemo_async_terminate(void)

{
/* VxWorks Interrupt Block: "<Root>/Async Interrupt”
/* Disable interrupt for ISR system: isr_numl_vecl92
sysintDisable(l);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt”
/* Disable interrupt for ISR system: isr_num2_vecl93
sysintDisable(2);

/* Terminate for S-Function (vxinterruptl): "<Root>/Async Interrupt”

*  Terminate for SubSystem: "<S4>/Subsystem®
*/

/* Termination for function-call system: "<S4>/Subsystem® */

/* VxWorks Task Block: "<S5>/S-Function® (vxtaskl) */
/* Destroy task: TaskO0 */
taskDelete(rtwdemo_async_DW.SFunction_IWORK.TasklID);

*/
*/

*/
*/

incorporates:

/* End of Terminate for S-Function (vxinterruptl): “<Root>/Async Interrupt® */

}
Related Information

* Async Interrupt

+ Task Sync

+  “Generate Interrupt Service Routines”

* “Timers in Asynchronous Tasks”

* “Create a Customized Asynchronous Library”

* “Import Asynchronous Event Data for Simulation”
* “Load Data to Root-Level Input Ports”

+  “Asynchronous Events”

+ “Rate Transitions and Asynchronous Blocks”
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“Asynchronous Support Limitations”

More About

“Generate Interrupt Service Routines” on page 5-6

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page
5-30

“Timers in Asynchronous Tasks” on page 5-42
“Import Asynchronous Event Data for Simulation” on page 5-53

“Rate Transitions and Asynchronous Blocks” on page 5-37
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Pass Asynchronous Events in RTOS as Input To a Referenced Model

This example shows how to simulate and generate code for a model that triggers
asynchronous events in an example RTOS (VxWorks®) that get passed as input to a
referenced model.

Open Example Model
Open the example model rtwdemo_async_mdlreftop.

Warning: Undefined function “LibraryBrowserCustomizer® for
input arguments of type "DAStudio.CustomizationManager”.

20 Hz ISR F riwdema_async_mdirefbot
T Interrupt 1
- »5im Outl o 1)
15 Hz ISR | Out —» SimIRQ  IRQN —» [ (m Outl
¥ Coder Interrupt2 Unprotected RT1
"F—l—b- Environment Async Interrupt
Controller
f—,—b 1) #] in1_60hz Outz »2 )
In1_B0hz Out2
2} ] InZ_60_hz
In2_60_hz
Cut3 3 )
(3 ) » In3_B0hz Outs
In3_60hz
Model

This model shows how to simulate and generate code for asynchronous events on a real-time
multitasking system. The two asynchronous events, "Interrupt1” and "Interrupt2”, are executed in the
referenced model via two different function-call input ports. The code generated for these blocks is
specifically tailored for the VxWorks operating system. However, you can modify the Async Interrupt
block to generate code specific to your environment whether or not you are usin[.; an oErating szstem.

Generate Code Using Generate Code Using Display Sample
Simulink Coder Embedded Coder Time Colors
(double-click) (double-click) (double-click)

Caopyright 2010-2012 The MathWorks, Inc.
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The model simulates an interrupt source and includes an Async Interrupt block and
referenced model. The Async Interrupt block creates two Versa Module Eurocard (VME)
interrupt service routines (ISRs) that pass interrupt signals to Inport blocks 1 and 2

of the referenced model. You can place an Async Interrupt block between a simulated
interrupt source and one of the following:

*  Function call subsystem
* Task Sync block
+ A Stateflow® chart configured for a function call input event

+ A referenced model with a Inport block that connects to one of the preceding model
elements

In this example model, the Async Interrupt block passes asynchronous events (function-
call trigger signals), Interruptl and Interrupt2, to the referenced model through
Inport blocks 1 and 2.

The code generated for the Async Interrupt block is tailored for the example real-time
operating system (VxWorks). However, you can modify the block to generate code specific
to your run-time environment.

Open the referenced model.

The referenced model includes the two Inport blocks that receive the interrupts, each
connected to an Asynchronous Task Specification block, function-call subsystems Count
and Algorithm, and Rate Transition blocks. The Asynchronous Task Specification
block, in combination with a root-level Inport block, allows a reference model to receive
asynchronous function-call input. To use the block:

1  Connect the Asynchronous Task Specification block to the output port of a root-level
Inport block that outputs a function-call trigger.

2 Select the Output function call parameter of the Inport block to specify that it
accepts function-call signals.

3 On the Asynchronous Task Specification parameters dialog box, set the task priority
for the asynchronous task associated with an Inport block. Specify an integer or [].
If you specify an integer, it must match the priority of the interrupt initiated by the
Async Interrupt block in the parent model. If you specify [], the priorities do not have
to match.

The Asynchronous Task Specification block for the higher priority interrupt,
interruptl, connects to function-call subsystem Count. Count represents a simple
interrupt service routine (ISR). The second Asynchronous Task Specification block
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connects to the subsystem Algorithm, which includes more substance. It includes
multiple blocks and produces two output values. Both subsystems execute at interrupt
level.

For each interrupt level specified for the Async Interrupt block in the parent model, the
block generates a VME ISR that executes the connected subsystem, Task Sync block, or
chart.

In the example top model, the Async Interrupt block is configured for VME interrupts
1 and 2, using interrupt vector offsets 192 and 193. Interrupt 1 is wired to trigger
subsystem Count. Interrupt 2 is wired to trigger subsystem Algorithm.

The Rate Transition blocks handle data transfers between ports that operate at different
rates. In two instances, the blocks protect data transfers (prevent them from being
preempted and corrupted). In the other instance, no special behavior occurs.

Data Transfer Assumptions

+ Data transfers occur between one reading task and one writing task.
* A read or write operation on a byte-sized variable is atomic.
* When two tasks interact, only one can preempt the other.

*  For periodic tasks, the task with the faster rate has higher priority than the task with
the slower rate. The task with the faster rate preempts the tasks slower rates.

* Tasks run on a single processor. Time slicing is not allowed.

*  Processes do not crash and restart, especially while data is being transferred between
tasks.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for input and output appear red and green, respectively.
Constants are magenta. Asynchronous interrupts are purple. The Rate Transition
Blocks, which are hybrid (input and output sample times can differ), appear yellow.

Generate Code and Report

Generate code and a code generation report for the model. Async Interrupt block and
Task Sync block generated code is for the example RTOS (VxWorks). However, you can
modify the blocks to generate code for another run-time environment.

1. Create a temporary folder for the build and inspection process.
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2. Build the model.

Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

### Wrapping unrecognized make command (angle brackets added)

Hitt <make>

### in default batch file

### Successfully updated the model reference RTW target for model: rtwdemo_async_mdlre:
### Starting build procedure for model: rtwdemo_async_mdlreftop

Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

### Wrapping unrecognized make command (angle brackets added)

Hitt <make>

### in default batch file

### Successful completion of code generation for model: rtwdemo_async_mdlreftop

Review Initialization Code

Open the generated source file rtwdemo_async_mdlreftop.c. The initialization code
connects and enables ISR isr_numl_vecl192 for interrupt 1 and ISR isr_num2_vec193
for interrupt 2.

static void rtwdemo_async_mdlreftop_initialize(void)

{
/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */

/* Connect and enable ISR function: isr_numl vecl92 */

if (intConnect(INUM_TO_IVEC(192), isr_numl_vecl92, 0) != OK) {
printf("intConnect failed for ISR 1.\n");

}

sysintEnable(1);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */

/* Connect and enable ISR function: isr_num2_vecl93 */

if (intConnect(INUM_TO_IVEC(193), isr_num2_vecl93, 0) != OK) {
printf("intConnect failed for ISR 2.\n");

}

sysintEnable(2);

/* Systemlnitialize for ModelReference: “<Root>/Model” */
rtwdemo_async_mdlrefbot_Init(&rtwdemo_async_mdlreftop_Y.Outl);

/* Enable for S-Function (vxinterruptl): "<Root>/Async Interrupt® */
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/* Enable for ModelReference: "<Root>/Model” incorporates:
* Enable for Inport: "<Root>/Inl_60hz*

* Enable for Inport: "<Root>/In2_60_hz*

* Enable for Inport: "<Root>/In3_60hz*

*/

rtwdemo_async_mdlrefbot_Interruptl_Enable();
rtwdemo_async_mdlrefbot_Interrupt2_Enable();

/* End of Enable for S-Function (vxinterruptl): "<Root>/Async Interrupt® */
}

Review ISR Code

In the generated source file rtwdemo_async_mdlreftop.c, review the code for ISRs
isr_numl_vecl192 and isr_num2_vec293. Each ISR:

* Disables interrupts.

+ Saves floating-point context.

+ Calls the code generated for the subsystem connected to the referenced model Inport
block that receives the interrupt.

* Restores floating-point context.
* Reenables interrupts.

void isr_numl_vecl92(void)

{
int T lock;
FP_CONTEXT context;

/* disable interrupts (system is configured as non-preemptive) */
lock = intLock();

/* save floating point context */
fppSave(&context) ;

/* Call the system: “<Root>/Model® */

{
/* S-Function (vxinterruptl): "<Root>/Async Interrupt® */

/* ModelReference: "<Root>/Model” incorporates:

* Inport: "<Root>/Inl_60hz*"
* Inport: "<Root>/In2_60_hz*"
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* Inport: "<Root>/1n3_60hz*"
*/
rtwdemo_async_mdlrefbot_Interruptl(&rtwdemo_async_mdlreftop_Y.Outl);

/* End of Outputs for S-Function (vxinterruptl): "<Root>/Async Interrupt® */
¥

/* restore floating point context */
fppRestore(&context);

/* re-enable interrupts */
intUnlock(lock);

}

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
void isr_num2_vecl93(void)

{
FP_CONTEXT context;

/* save floating point context */

fppSave(&context);
/* Call the system: “<Root>/Model® */
{
/* S-Function (vxinterruptl): "<Root>/Async Interrupt® */
/* ModelReference: "<Root>/Model” incorporates:
* Inport: "<Root>/Inl_60hz*"
* Inport: "<Root>/In2_60_hz*"
* Inport: "<Root>/1n3_60hz*"
*/
rtwdemo_async_mdlrefbot_Interrupt2();
/* End of Outputs for S-Function (vxinterruptl): "<Root>/Async Interrupt® */
¥

/* restore floating point context */
fppRestore(&context);

Review Task Termination Code

The Task Sync block generates the following termination code.
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static void rtwdemo_async_mdlreftop_terminate(void)

{
/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_numl_vecl92 */
sysintDisable(l);

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
/* Disable interrupt for ISR system: isr_num2_vecl93 */
sysintDisable(2);

}

Related Information

* Async Interrupt

* Asynchronous Task Specification

*  “Generate Interrupt Service Routines”

* “Timers in Asynchronous Tasks”

+ “Create a Customized Asynchronous Library”

* “Import Asynchronous Event Data for Simulation”
* “Load Data to Root-Level Input Ports”

* “Asynchronous Events”

+ “Rate Transitions and Asynchronous Blocks”

+ “Asynchronous Support Limitations”

More About

. “Generate Interrupt Service Routines” on page 5-6

. “Spawn and Synchronize Execution of RTOS Task” on page 5-14

. “Timers in Asynchronous Tasks” on page 5-42
. “Import Asynchronous Event Data for Simulation” on page 5-53
. “Rate Transitions and Asynchronous Blocks” on page 5-37
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Rate Transitions and Asynchronous Blocks

Because an asynchronous function call subsystem can preempt or be preempted by other
model code, an inconsistency arises when more than one signal element is connected to
an asynchronous block. The issue is that signals passed to and from the function call
subsystem can be in the process of being written to or read from when the preemption
occurs. Thus, some old and some new data 1s used. This situation can also occur with
scalar signals in some cases. For example, if a signal is a double (8 bytes), the read or
write operation might require two machine instructions. The following sections describe
these issues.

In this section...

“About Rate Transitions and Asynchronous Blocks” on page 5-37

“Handle Rate Transitions for Asynchronous Tasks” on page 5-39

“Handle Multiple Asynchronous Interrupts” on page 5-39

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vx1ibl on page 5-2 library. These blocks provide
starting point examples to help you develop custom blocks for your target environment.

About Rate Transitions and Asynchronous Blocks

The Simulink Rate Transition block is designed to deal with preemption problems
that occur in data transfer between blocks running at different rates. These issues are
discussed in “Time-Based Scheduling and Code Generation” on page 4-2.

You can handle rate transition issues automatically by selecting the Automatically
handle data transfers between tasks option on the Solver pane of the Configuration
Parameters dialog box. This saves you from having to manually insert Rate Transition
blocks to avoid invalid rate transitions, including invalid asynchronous-to-periodic and
asynchronous-to-asynchronous rate transitions, in multirate models. For asynchronous
tasks, the Simulink engine configures inserted blocks for data integrity but not
determinism during data transfers.

For asynchronous rate transitions, the Rate Transition block provides data integrity,
but cannot provide determinism. Therefore, when you insert Rate Transition blocks
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explicitly, you must clear the Ensure data determinism check box in the Block
Parameters dialog box.

When you insert a Rate Transition block between two blocks to maintain data integrity
and priorities are assigned to the tasks associated with the blocks, the code generator
assumes that the higher priority task can preempt the lower priority task and the lower
priority task cannot preempt the higher priority task. If the priority associated with task
for either block is not assigned or the priorities of the tasks for both blocks are the same,
the code generator assumes that either task can preempt the other task.

Priorities of periodic tasks are assigned by the Simulink engine, in accordance with the
options specified in the Solver options section of the Solver pane of the Configuration
Parameters dialog box. When the Periodic sample time constraint option field of
Solver options is set to Unconstrained, the model base rate priority is set to 40.
Priorities for subrates then increment or decrement by 1 from the base rate priority,
depending on the setting of the Higher priority value indicates higher task priority
option.

You can assign priorities manually by using the Periodic sample time properties
field. The Simulink engine does not assign a priority to asynchronous blocks. For
example, the priority of a function call subsystem that connects back to an Async
Interrupt block is assigned by the Async Interrupt block.

The Simulink task priority field of the Async Interrupt block specifies a priority level
(required) for every interrupt number entered in the VME interrupt number(s) field.
The priority array sets the priorities of the subsystems connected to each interrupt.

For the Task Sync block, if the example RTOS (VxWorks) is the target, the Higher
priority value indicates higher task priority option should be deselected. The
Simulink task priority field specifies the block priority relative to connected blocks (in
addition to assigning an RTOS priority to the generated task code).

The vx1ibl library provides two types of rate transition blocks as a convenience. These
are simply preconfigured instances of the built-in Simulink Rate Transition block:

*  Protected Rate Transition block: Rate Transition block that is configured with the
Ensure data integrity during data transfers on and Ensure deterministic
data transfer off.

+  Unprotected Rate Transition block: Rate Transition block that is configured with the
Ensure data integrity during data transfers option off.
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Handle Rate Transitions for Asynchronous Tasks
For rate transitions that involve asynchronous tasks, you can maintain data integrity.
However, you cannot achieve determinism. You have the option of using the Rate

Transition block or target-specific rate transition blocks.

Consider the following model, which includes a Rate Transition block.

T
i
1
1
1
1
1
1

¥ ¥
fumnction) (| fumnction{)
N int Out 1 ] Int outt p
[ [
Function-Call Rate Transition Function-Call
Subsystemn Task1 Subsysteml Task2

You can use the Rate Transition block in either of the following modes:

* Maintain data integrity, no determinism

*  Unprotected

Alternatively, you can use target-specific rate transition blocks. The following blocks are
available for the example RTOS (VxWorks):

*  Protected Rate Transition block (reader)
*  Protected Rate Transition block (writer)

* Unprotected Rate Transition block

Handle Multiple Asynchronous Interrupts

Consider the following model, in which two functions trigger the same subsystem.
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The two tasks must have equal priorities. When priorities are the same, the outcome
depends on whether they are firing periodically or asynchronously, and also on a
diagnostic setting. The following table and notes describe these outcomes:

Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

=1

Async Priority = |Async Priority = |Async Priority |Periodic Priority |Periodic Priority
1 2 Unspecified =1 =2
Async Priority |Supported (1)

Async Priority
=2

Supported (1)

Async Priority

Supported (2)

Unspecified
Periodic Supported
Priority = 1
Periodic Supported
Priority = 2
1  Control these outcomes using the Tasks with equal priority option in the
Diagnostics pane of the Configuration Parameters dialog box; set this diagnostic to
none if tasks of equal priority cannot preempt each other in the target system.
2 For this case, the following warning message is issued unconditionally:
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Empty cells in the above table represent multiple triggers with differing priorities, which
are unsupported.

The code generator provides absolute time management for a function call subsystem
connected to multiple interrupts in the case where timer settings for TriggerA and
TriggerB (time source, resolution) are the same.

Assume that all of the following conditions are true for the model shown above:

* A function call subsystem is triggered by two asynchronous triggers (TriggerA and
TriggerB) having identical priority settings.

+ Each trigger sets the source of time and timer attributes by calling the functions
ssSetTimeSource and ssSetAsyncTimerAttributes.

* The triggered subsystem contains a block that needs elapsed or absolute time (for
example, a Discrete Time Integrator).

The asynchronous function call subsystem has one global variable, clockTick# (where #
1s the task ID associated with the subsystem). This variable stores absolute time for the
asynchronous task. There are two ways timing can be handled:

+ If the time source is set to SS_TIMESOURCE_BASERATE, the code generator produces
timer code in the function call subsystem, updating the clock tick variable from the
base rate clock tick. Data integrity is maintained if the same priority is assigned to
TriggerA and TriggerB.

+ If the time source is SS_TIMESOURCE_SELF, generated code for both TriggerA and
TriggerB updates the same clock tick variable from the hardware clock.

The word size of the clock tick variable can be set directly or be established according to
the Application lifespan (days) setting and the timer resolution set by the TriggerA
and TriggerB S-functions (which must be the same). See “Timers in Asynchronous Tasks”
on page 5-42 and “Control Memory Allocation for Time Counters” on page 31-15

for more information.

More About

. “Time-Based Scheduling and Code Generation” on page 4-2

. “Asynchronous Support Limitations” on page 5-57
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Timers in Asynchronous Tasks

An ISR can set a source for absolute time. This is done with the function
ssSetTimeSource. The function ssSetTimeSource cannot be called before
ssSetOutputPortWidth is called. If this occurs, the program will come to a halt and
generate an error message. SsSetTimeSource has the following three options:

+ SS TIMESOURCE_SELF: Each generated ISR maintains its own absolute time counter,
which is distinct from a periodic base rate or subrate counters in the system. The
counter value and the timer resolution value (specified in the Timer resolution
(seconds) parameter of the Async Interrupt block) are used by downstream blocks to
determine absolute time values required by block computations.

+ SS_TIMESOURCE_CALLER: The ISR reads time from a counter maintained by its
caller. Time resolution is thus the same as its caller's resolution.

+ SS TIMESOURCE_BASERATE: The ISR can read absolute time from the model's
periodic base rate. Time resolution is thus the same as its base rate resolution.

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vx1ibl on page 5-2 library. These blocks provide
starting point examples to help you develop custom blocks for your target environment.

By default, the counter is implemented as a 32-bit unsigned integer member

of the Timing substructure of the real-time model structure. For a target that
supports the rtModel data structure, when the time data type is not set by using
ssSetAsyncTimeDataType, the counter word size is determined by the Application
lifespan (days) model parameter. As an example (from ERT target code),

/* Real-time Model Data Structure */
struct _RT_MODEL_elapseTime_exp_Tag {
const char *errorStatus;

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickl;
uint32_T clockTick2;

5-42



Timers in Asynchronous Tasks

} Timing;
}:

The example omits unused fields in the Timing data structure (a feature of ERT target
code not found in GRT). For a target that supports the rtModel data structure, the
counter word size is determined by the Application lifespan (days) model parameter.

By default, the vx1ib1 library blocks for the example RTOS (VxWorks) set the timer
source to SS_TIMESOURCE_SELF and update their counters by using the system

call tickGet. tickGet returns a timer value maintained by the RTOS kernel. The
maximum word size for the timer is UINT32. The following example shows a generated
call to tickGet.

/* VxWorks Interrupt Block: "<Root>/Async Interrupt® */
void isr_num2_vecl93(void)

{

/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */
rtM->Timing.clockTick2 = tickGet();

The tickGet call is supplied only as an example. It can (and in many instances should)
be replaced by a timing source that has better resolution. If you are implementing a
custom asynchronous block for an RTOS other than the example RTOS (VxWorks), you
should either generate an equivalent call to the target RTOS, or generate code to read a
timer register on the target hardware.

The default Timer resolution (seconds) parameter of your Async Interrupt block
implementation should be changed to match the resolution of your target's timing source.

The counter is updated at interrupt level. Its value represents the tick value of the
timing source at the most recent execution of the ISR. The rate of this timing source is
unrelated to sample rates in the model. In fact, typically it is faster than the model's base
rate. Select the timer source and set its rate and resolution based on the expected rate of
interrupts to be serviced by the Async Interrupt block.

For an example of timer code generation, see “Async Interrupt Block Implementation” on
page 5-46.

Related Examples

. “Generate Interrupt Service Routines” on page 5-6
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. “Spawn and Synchronize Execution of RTOS Task” on page 5-14

. “Timers in Asynchronous Tasks” on page 5-42
. “Create a Customized Asynchronous Library” on page 5-45
. “Import Asynchronous Event Data for Simulation” on page 5-53

More About

. “Absolute and Elapsed Time Computation” on page 3-2
. “Time-Based Scheduling and Code Generation” on page 4-2
. “Asynchronous Events” on page 5-2

. “Asynchronous Support Limitations” on page 5-57
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Create a Customized Asynchronous Library

This topic describes how to implement asynchronous blocks for use with your target
RTOS, using the Async Interrupt and Task Sync blocks as a starting point. Rate
Transition blocks are target-independent, so you do not need to develop customized rate
transition blocks. The following sections provide implementation details.

In this section...

“About Implementing Asynchronous Blocks” on page 5-45
“Async Interrupt Block Implementation” on page 5-46
“Task Sync Block Implementation” on page 5-50

“asynclib.tle Support Library” on page 5-51

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vx1ibl on page 5-2 library. These blocks provide
starting point examples to help you develop custom blocks for your target environment.

About Implementing Asynchronous Blocks

You can customize the asynchronous library blocks by modifying the block
implementation. These files are

* The block's underlying S-function MEX-file
* The TLC files that control code generation of the block

In addition, you need to modify the block masks to remove references specific to the
example RTOS (VxWorks) and to incorporate parameters required by your target RTOS.

Custom block implementation is an advanced topic, requiring familiarity with the
Simulink MEX S-function format and API, and with the Target Language Compiler
(TLC). These topics are covered in the following documents:

*  Simulink topics “What Is an S-Function?”, “Use S-Functions in Models”, “How S-
Functions Work”, and “Implementing S-Functions” describe MEX S-functions and the
S-function API in general.

* The “Inlining S-Functions”, “Inline C MEX S-Functions”, and “S-Functions and Code
Generation” on page 24-99 describe how to create a TLC block implementation for
use in code generation.
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The following sections discuss the C/C++ and TLC implementations of the asynchronous
library blocks, including required SimStruct macros and functions in the TLC
asynchronous support library (asynclib._tlc).

Async Interrupt Block Implementation

The source files for the Async Interrupt block are located in matlabroot/rtw/c/
tornado/devices (open):

+ vxinterruptl.c: C MEX-file source code, for use in configuration and simulation
+ vxinterruptl._tlc: TLC implementation, for use in code generation

+ asynclib.tlc: library of TLC support functions, called by the TLC implementation
of the block. The library calls are summarized in “asynclib.tlc Support Library” on
page 5-51.

C MEX Block Implementation

Most of the code in vxinterruptl.c performs ordinary functions that are not related to
asynchronous support (for example, obtaining and validating parameters from the block
mask, marking parameters nontunable, and passing parameter data to the model . rtw
file).

The mdIInitializeSizes function uses special SimStruct macros and SS_OPTIONS
settings that are required for asynchronous blocks, as described below.

Note that the following macros cannot be called before ssSetOutputPortWidth is
called:

+ ssSetTimeSource

+ ssSetAsyncTimerAttributes

+ ssSetAsyncTimerResolutionEl

+ ssSetAsyncTimerDataType

+ ssSetAsyncTimerDataTypeEl

* ssSetAsyncTaskPriorities

+ ssSetAsyncTaskPrioritiesEl

If one of the above macros is called before ssSetOutputPortWidth, the following error
message appears:

SL_SfcnMustSpecifyPortWidthBfCallSomeMacro {
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S-function "%s" in "%<BLOCKFULLPATH>"
must set output port %d width using
ssSetOutputPortWidth before calling macro %s

ssSetAsyncTimerAttributes

ssSetAsyncTimerAttributes declares that the block requires a timer, and sets the
resolution of the timer as specified in the Timer resolution (seconds) parameter.

The function prototype is

ssSetAsyncTimerAttributes(SimStruct *S, double res)

where

S is a Simstruct pointer.

res is the Timer resolution (seconds) parameter value.

The following code excerpt shows the call to ssSetAsyncTimerAttributes.

/* Setup Async Timer attributes */
ssSetAsyncTimerAttributes(S,mxGetPr(TICK_RES)[0]);

ssSetAsyncTaskPriorities

ssSetAsyncTaskPriorities sets the Simulink task priority for blocks executing at
each interrupt level, as specified in the block's Simulink task priority field.

The function prototype is

ssSetAsyncTaskPriorities(SimStruct *S, int numlSRs,

int *priorityArray)

where

Sis a SimStruct pointer.

numlSRs is the number of interrupts specified in the VME interrupt number(s)
parameter.

priorityarray is an integer array containing the interrupt numbers specified in the
VME interrupt number(s) parameter.

The following code excerpt shows the call to ssSetAsyncTaskPriorities:

/* Setup Async Task Priorities */
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}

priorityArray = malloc(numlSRs*sizeof(int_T));
for (i=0; i<numlSRs; i++) {

priorityArray[i] = (int_T)(mxGetPr(ISR_PRIORITIES)[i]);
}
ssSetAsyncTaskPriorities(S, numlSRs, priorityArray);
free(priorityArray);
priorityArray = NULL;

SS_OPTION Settings

The code excerpt below shows the SS_OPTION settings for vxinterruptl.c.
SS_OPTION_ASYNCHRONOUS_INTERRUPT should be used when a function call subsystem
is attached to an interrupt. For more information, see the documentation for SS_OPTION
and SS_OPTION_ASYNCHRONOUS in matlabroot/simulink/include/simstruc.h.

ssSetOptions( S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |
SS_OPTION_ASYNCHRONOUS_INTERRUPT |

TLC Implementation

This section discusses each function of vxinterruptl.tlc, with an emphasis on target-
specific features that you will need to change to generate code for your target RTOS.

Generate #include Directives

vxinterruptl.tlc begins with the statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include header files for the
example RTOS (VxWorks). You should replace this with a file that generates includes for
your target RTOS.

BlocklInstanceSetup Function
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For each connected output of the Async Interrupt block, BlocklnstanceSetup defines a
function name for the corresponding ISR in the generated code. The functions names are
of the form

isr_num_vec_offset

where num is the ISR number defined in the VME interrupt number(s) block
parameter, and offset is an interrupt table offset defined in the VME interrupt
vector offset(s) block parameter.
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In a custom implementation, this naming convention is optional.

The function names are cached for use by the Outputs function, which generates the
actual ISR code.

Outputs Function

Outputs iterates over the connected outputs of the Async Interrupt block. An ISR is
generated for each such output.

The ISR code is cached in the ""Functions' section of the generated code. Before
generating the ISR, Outputs does the following:

* Generates a call to the downstream block (cached in a temporary buffer).

+ Determines whether the ISR should be locked or not (as specified in the Preemption
Flag(s) block parameter).

*  Determines whether the block connected to the Async Interrupt block is a
Task Sync block. (This information is obtained by using the asynclib calls
LibGetFcnCallBlock and LibGetBlockAttribute.) If so,

The preemption flag for the ISR must be set to 1. An error results otherwise.

The RTOS (VxWorks) calls to save and restore floating-point context are
generated, unless the user has configured the model for integer-only code
generation.

When generating the ISR code, Outputs calls the asynclib function
LibNeedAsyncCounter to determine whether a timer is required by the connected
subsystem. If so, and if the time source is set to be SS_TIMESOURCE_SELF by
ssSetTimeSource, LibSetAsyncCounter is called to generate an RTOS (VxWorks)
tickGet function call and update the counter. In your implementation, you should
generate either an equivalent call to the target RTOS, or generate code to read the a
timer register on the target hardware.

Start Function

The Start function generates the required RTOS (VxWorks) calls (int_connect and
sysInt_Enable) to connect and enable each ISR. You should replace this with calls to
your target RTOS.

Terminate Function

The Terminate function generates the call sysIntDisable to disable each ISR. You
should replace this with calls to your target RTOS.
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Task Sync Block Implementation

The source files for the Task Sync block are located in matlabroot/rtw/c/tornado/
devices (open). They are

+ vxtaskl.cpp: MEX-file source code, for use in configuration and simulation.

+ vxtaskl.tlc: TLC implementation, for use in code generation.

+ asynclib.tlc: library of TLC support functions, called by the TLC implementation
of the block. The library calls are summarized in “asynclib.tlc Support Library” on
page 5-51.

C MEX Block Implementation

Like the Async Interrupt block, the Task Sync block sets up a timer, in this case with a
fixed resolution. The priority of the task associated with the block is obtained from the
Simulink task priority parameter. The SS_OPTION settings are the same as those
used for the Async Interrupt block.

ssSetAsyncTimerAttributes(S, 0.01);

priority = ((int_T) (C(mxGetPr(PRIORITY)));
ssSetAsyncTaskPriorities(S,1,&priority);

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_ASYNCHRONOUS |
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |
}

TLC Implementation

Generate #include Directives
vxtaskl.tlc begins with the statement
%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include header files for the
example RTOS (VxWorks). You should replace this with a file that generates includes for
your target RTOS.

BlockInstanceSetup Function

The BlocklnstanceSetup function derives the task name, block name, and other
identifiers used later in code generation. It also checks for and warns about unconnected
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block conditions, and generates a storage declaration for a semaphore (stopSem) that is
used in case of interrupt overflow conditions.

Start Function

The Start function generates the required RTOS (VxWorks) calls to define storage for
the semaphore that is used in management of the task spawned by the Task Sync block.
Depending on the value of the CodeFormat TLC variable of the target, either a static
storage declaration or a dynamic memory allocation call is generated. This function also
creates a semaphore (semBCreate) and spawns an RTOS task (taskSpawn). You should
replace these with calls to your target RTOS.

Outputs Function

The Outputs function generates an example RTOS (VxWorks) task that waits for a
semaphore. When it obtains the semaphore, it updates the block's tick timer and calls
the downstream subsystem code, as described in “Spawn and Synchronize Execution of
RTOS Task” on page 5-14. Outputs also generates code (called from interrupt level) that
grants the semaphore.

Terminate Function

The Terminate function generates the example RTOS (VxWorks) call taskDelete to

end execution of the task spawned by the block. You should replace this with calls to your
target RTOS.

Note also that if the target RTOS has dynamically allocated memory associated with the
task, the Terminate function should deallocate the memory.

asynclib.tlc Support Library

asynclib.tlcis a library of TLC functions that support the implementation of
asynchronous blocks. Some functions are specifically designed for use in asynchronous
blocks. For example, LibSetAsyncCounter generates a call to update a timer for an
asynchronous block. Other functions are utilities that return information required

by asynchronous blocks (for example, information about connected function call
subsystems).

The following table summarizes the public calls in the library. For details, see the library

source code and the vxinterruptl.tlc and vxtaskl.tlc files, which call the library
functions.

5-51



5 Event-Based Scheduling in Simulink Coder

Summary of asynclib.tic Library Functions

Function

Description

LibBlockExecuteFcnCall

For use by inlined S-functions with function call outputs.
Generates code to execute a function call subsystem.

LibGetBlockAttribute

Returns a field value from a block record.

LibGetFcnCalIBlock

Given an S-Function block and call index, returns the block
record for the downstream function call subsystem block.

LibGetCallerClockTickCounter

Provides access to the time counter of an upstream
asynchronous task.

LibGetCallerClockTickCounter-+
HighwWord

Provides access to the high word of the time counter of an
upstream asynchronous task.

LibManageAsyncCounter

Determines whether an asynchronous task needs a counter
and manages its own timer.

LibNeedAsyncCounter

If the calling block requires an asynchronous counter,
returns TLC_TRUE, otherwise returns TLC_FALSE.

LibSetAsyncClockTicks

Returns code that sets clockTick counters that are to be
maintained by the asynchronous task.

LibSetAsyncCounter

Generates code to set the tick value of the block's
asynchronous counter.

LibSetAsyncCounterHighWord

Generates code to set the tick value of the high word of the
block's asynchronous counter

More About

. “Asynchronous Events’

“Spawn and Synchroni

“Timers in Asynchrono

“Import Asynchronous

“Asynchronous Suppor
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" on page 5-2

“Generate Interrupt Service Routines” on page 5-6

ze Execution of RTOS Task” on page 5-14

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page 5-30

us Tasks” on page 5-42

Event Data for Simulation” on page 5-53

“Rate Transitions and Asynchronous Blocks” on page 5-37

t Limitations” on page 5-57
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Import Asynchronous Event Data for Simulation

Capabilities

You can import asynchronous event data into a function-call subsystem via an Inport
block. For standalone fixed-step simulations, you can specify:
* The time points at which each asynchronous event occurs

*  The number of asynchronous events at each time point

Input Data Format

You can enter your asynchronous data at the MATLAB command line or on the Data
Import/Export pane of the Configuration Parameters dialog box. In either case, a
number of restrictions apply to the data format.

* The expression for the parameter Data Import/Export > Input must be a comma-
separated list of tables.
* The table corresponding to the input port outputting asynchronous events must be a
column vector containing time values for the asynchronous events.
* The time vector of the asynchronous events must be of double data type and
monotonically increasing.
+ All time data must be integer multiples of the model step size.

+ To specify multiple function calls at a given time step, you must repeat the time
value accordingly. In other words, if you wish to specify three asynchronous events
at t =1 and two events at ¢ = 9, then you must list 1 three times and 9 twice in
your time vector. (t = [1 1 1 9 9]")

* The table corresponding to normal data input port can be of any other supported
format.

See “Load Data to Root-Level Input Ports” for more information.

Example

In this model, a function-call subsystem is used to track the total number of
asynchronous events and to multiply a set of inputs by 2.
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To input data via the Configuration Parameters dialog box,

Select Simulation > Configuration Parameters > Data Import/Export.
Select the Input parameter.
For this example, enter the following command in the MATLAB window:

>>t=[1159099]", u= [[0:10]" [0:10]"]
Alternatively, you can enter the data as ¢, fu in the Data Import/Export pane:



Import Asynchronous Event Data for Simulation

Select:

- Solver

- Data Import/Export
- Optimization
-Diagnostics

--Model Referencing
-Simulation Target
-Code Generation
-HDL Code Generation

--Hardware Implementa...

Load from workspace
Input: t, tu
[ Initial state: |xdnitial

Save to workspace

Time, State, Output

Time: tout
[7] states: xout
Output: yout

[] Final states: |xFinal

Format: Array -

Limit data points to last: 1000
Decimation: 1

Save complete SimState in final state

Here, t is a column vector containing the times of asynchronous events for Inport
block Inl while tu is a table of input values versus time for Inport block In2.

2 By default, the Time and Output options are selected and the output variables are
named tout and yout.

3 Simulate the model.
4 Display the output by entering [tout yout] at the MATLAB command line and

obtain:

ans =

QOVwoO~NOUA~AWNEO

[y

DO WWWWNNNNO

10
10
10
10
18
18

Here the first column contains the simulation times.

The second column represents the output of Outl — the total number of
asynchronous events. Since the function-call subsystem is triggered twice at ¢ = 1,
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the output is 2. It is not called again until ¢ = 5, and so does not increase to 3 until
then. Finally, it is called three times at 9, so it increases to 6.

The third column contains the output of Out2 obtained by multiplying the input

value at each asynchronous event time by 2. At any other time, the output is held at
its previous value

More About

“Asynchronous Events” on page 5-2

“Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page 5-30
“Load Data to Root-Level Input Ports”

“Rate Transitions and Asynchronous Blocks” on page 5-37
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Asynchronous Support Limitations

In this section...

“Asynchronous Task Priority” on page 5-57

“Convert an Asynchronous Subsystem into a Model Reference” on page 5-57

Asynchronous Task Priority

The Simulink product does not simulate asynchronous task behavior. Although you can
specify a task priority for an asynchronous task represented in a model with the Task
Sync block, the priority setting is for code generation purposes only and is not honored
during simulation.

Convert an Asynchronous Subsystem into a Model Reference

You can use the Asynchronous Task Specification block to specify an asynchronous
function-call input to a model reference. However, you must convert the Async Interrupt
and Function-Call blocks into a subsystem and then convert the subsystem into a model

reference.

Following is an example with step-by-step instructions for conversion.

.
[N
20 Hz ISR Sim
Out SimIRQ IRQN
Coder i
Environment Async Interupt fzall])
Controlier Qut > —D‘

H
I [ Out1
Count Unprotected RT

¥

0

1 Convert the Async Interrupt and Count blocks into a subsystem. Select both blocks
and right-click Count. From the menu, select Subsystem & Model Reference >
Create Subsystem from Selection.
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In1
Async Interrupt VO
fcall
= oul (D
Out1
Count

To prepare for converting the new subsystem to a Model block, set the following
configuration parameters in the top model. Open the Configuration Parameters
dialog box.

Under Diagnostics, navigate to the Sample Time pane. Then set Multitask rate
transition to error and Multitask conditionally executed subsystem to
error.

Under Diagnostics, navigate to the Connectivity pane. Set Mux blocks used to
create bus signals, Bus signal treated as vector, and Invalid function-call
connection to error. Also set Context-dependent inputs to Enable All.

Under Diagnostics, navigate to the Data Validity pane and set the Multitask
data store option to error.

On the All Parameters tab, set Underspecified initialization detection to
Simplified.

If your model is large or complex, run the Model Advisor checks in the folder
“Migrating to Simplified Initialization Mode Overview” and make the suggested
changes.

Convert the subsystem to an atomic subsystem. Select Edit > Subsystem
Parameters > Treat as atomic unit.
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20 Hz ISR Sim
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Coder ¢
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4 Convert the subsystem to a Model block. Right-click the subsystem and select
Subsystem & Model Reference > Convert Subsystem to > Referenced Model.
A window opens with a model reference block inside of it.

5 Replace the subsystem in the top model with the new model reference block.

ﬂ'ﬂ' Subsys
—|_> ]
[t i
20Hz ISR ot p{in1  Outt =1
- Coder M  [m
Out1
Environment Unprotected RT
- Controller Subsystem

6 Move the Async Interrupt block from the model reference to the top model, before the
model reference block.
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7 Insert an Asynchronous Task Specification block in the model reference. Set the
priority of the Asynchronous Task Specification block. (For more information on

setting the priority, see Asynchronous Task Specification.)

>

In1

8 In the model reference, double-click the input port to open its Source Block

F: 10
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Parameters dialog box. Click the Signal Attributes tab and select the Output
function call option. Click OK.
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E Source Block Pararneters: Inl @
Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, 'Latch input by delaying outside signal'
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

Main Signal Attributes

Output function call

Minimurm: Maximum:

a f
Data type: | double

Lock output data type setting against changes by the fixed-point tools
Port dimensions (-1 for inherited):

1
Variable-size signal: | Inherit

Sample time (-1 for inherited):

Signal type: |real

Sampling mode: | Sample based

‘) oK H Cancel ” Help ]

9 Save your model and then perform Simulation > Update Diagram to verify your
settings.

5-61



5 Event-Based Scheduling in Simulink Coder

5-62

E’ L p[sim

20 Hz ISR Out ———=
Coder
Environment
Controller
More About
. “Asynchronous Events” on page 5-2

— - — e Dt ————
Out1



Subsystems in Simulink Coder
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+ “Generate Code and Executables for Individual Subsystem” on page 6-4

*  “Inline Subsystem Code” on page 6-7

* “Generate Subsystem Code as Separate Function and Files” on page 6-10

* “Generate Reusable Function for Identical Subsystems Within a Model” on page
6-11

* “Optimize Code for Identical Nested Subsystems” on page 6-14

* “Generate Reusable Code for Subsystems Containing S-Function Blocks” on page
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+ “Generate Reusable Code from Stateflow Charts” on page 6-16
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* “Code Reuse For Subsystems Shared Across Models” on page 6-20
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+ “Generate Reusable Code for Subsystems Shared Across Models” on page 6-28
* “Determine Why Subsystem Code Is Not Reused” on page 6-36
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Code Generation of Subsystems

For you to control how code is generated for a nonvirtual subsystem, the code generator
provides subsystem parameters that you can use. The categories of nonvirtual

subsystems are:

*  Conditionally executed subsystems. Execution depends upon a control signal or

control block. These subsystems include:

+ Triggered

+ Enabled
+ Action
Iterator

Function-call

For more information, see “Conditional Subsystems”.

+ Atomic subsystems: A virtual subsystem can be declared atomic (and therefore
nonvirtual) by using the “Treat as atomic unit” parameter in the Subsystem

Parameters dialog box.

For more information on nonvirtual subsystems and atomic subsystems, see “Systems
and Subsystems” and open the Subsystem Semantics library.

You can design and configure your model to control the code generated from nonvirtual

subsystems.

To...

See...

Generate inlined code from a selected
nonvirtual subsystem.

“Inline Subsystem Code” on page 6-7

Generate code for only a subsystem.

“Generate Code and Executables for
Individual Subsystem” on page 6-4

Generate separate functions with no
arguments, and optionally place the
subsystem code in a separate file.

“Generate Subsystem Code as Separate
Function and Files” on page 6-10

Generate a single reentrant function for
a subsystem that is included in multiple

places within a model.

“Generate Reusable Function for Identical
Subsystems Within a Model” on page
6-11




Code Generation of Subsystems

To... See...

Generate a single reentrant function for “Generate Reusable Code for Subsystems

a subsystem that is included in multiple Shared Across Models” on page 6-28

places in a model reference hierarchy. and “Code Reuse For Subsystems Shared
Across Models” on page 6-20

Note: If you generate code for a virtual subsystem, code generator treats the subsystem
as atomic and generates the code accordingly. The resulting code can change the
execution behavior of your model, for example, by applying algebraic loops, and therefore
introduce inconsistencies with the simulation behavior. Declare virtual subsystems as
atomic subsystems, which makes simulation and execution behavior consistent for your
model consistent.

Subsystem Code Dependence

Code generated from nonvirtual subsystems may or may not be completely independent
of the generating model. When generating code for a subsystem, the code may reference
global data structures of the model, even if the subsystem code is in a separate file.
Each subsystem code file contains include directives and comments describing the
dependencies. The code generator checks for cyclic file dependencies and warns about
them at build time. For descriptions of how generated code is packaged, see “Generated
Source Files and File Dependencies” on page 19-38.

To generate subsystem code that is independent of the generating model, place the
subsystem in a library and configure it as a reusable subsystem. For more information,
see “Code Reuse For Subsystems Shared Across Models” on page 6-20.
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Generate Code and Executables for Individual Subsystem

6-4

You can generate code and build an executable for a subsystem within a model. The code
generation and build process uses the code generation and build parameters of the root
model.

1

In the Configuration Parameters dialog box, set up the code generation and build
parameters, similar to setting up the code generation for a model.

Right-click the Subsystem block. From the context menu, select C/C++ Code >
Build This Subsystem from the context menu.

Alternatively, in the current model, click a subsystem and then from the Code
menu, select C/C++ Code > Build Selected Subsystem.

Note When you select Build This Subsystem, if the model is operating in external
mode, the build process automatically turns off external mode for the duration of
the build. The code generator restores external mode upon completion of the build
process.

The Build code for Subsystem window displays a list of the subsystem
parameters. The upper pane displays the name, class, and storage class of each
variable (or data object) that is referenced as a block parameter in the subsystem.
When you select a parameter in the upper pane, the lower pane shows the blocks
that reference the parameter and the parent system of each block.

The Storage Class column contains a menu for each row. The menu options set the
storage class or inline the parameter. To declare a parameter to be tunable, set the
Storage Class to a value other than Inlined.
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Selecttunable parameters and click Build

For more information on tunable and inlined parameters and storage classes, see
“Block Parameter Representation in the Generated Code” on page 14-43.

4  After selecting tunable parameters, Build to initiate the code generation and build
process.

5 The build process displays status messages in the MATLAB Command Window.
When the build is complete, the generated executable is in your working folder.
The name of the generated executable is subsystem.exe (on PC platforms) or
subsystem (on The Open Group UNIX platforms). subsystem is the name of the
source subsystem block.

The generated code is in a build subfolder, named subsystem_target_rtw.
subsystem is the name of the source subsystem block and target is the name of
the target configuration.

When you generate code for a subsystem, you can generate an S-function by selecting
Code > C/C++ Code> Generate S-Function, or you right-click the subsystem block
and select C/C++ Code > Build This Subsystem from the context menu. For more
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information on S-functions, see “Automate S-Function Generation with S-Function
Builder” on page 24-22.

Subsystem Build Limitations

The following limitations apply to building subsystems:

Subsystem build does not support a subsystem that has a function-call trigger input
or a function-call output.

When you right-click a subsystem block and select C/C++ Code > Build This
Subsystem from the context menu to build a subsystem that includes an Outport
block for which the Data type parameter specifies a bus object, you must address
errors that result from setting signal labels. To configure the software to display
these errors, in the Configuration Parameters dialog box for the parent model, on the
Diagnostics > Connectivity pane, set the Signal label mismatch parameter to
error.

When a subsystem is in a triggered or function-call subsystem, the right-click build
process might fail if the subsystem code is not sample-time independent. To find out
whether a subsystem is sample-time independent:

1 Copy all blocks in the subsystem to an empty model.

2 In the Configuration Parameters dialog box, on the Solver pane, set:

a Type to Fixed-step.

b Periodic sample time constraint to Ensure sample time
independent.

¢ Click Apply.

3 Update the model. If the model is sample-time dependent, Simulink generates an
error in the process of updating the diagram.
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Inline Subsystem Code

You can configure a nonvirtual subsystem to inline the subsystem code with the model
code. In the Subsystem Parameters dialog box, setting the Function packaging
parameter to Auto or Inline inlines the generated code of the subsystem.

The Auto option is the default. When there is only one instance of a subsystem in

the model, the Auto option inlines the subsystem code. When multiple instances of a
subsystem exist, the Auto option results in a single copy of the function (as a reusable
function). For function-call subsystems with multiple callers, the subsystem code is
generated as if you specified Nonreusable function.

To inline subsystem code, select Inline. The Inline option explicitly directs the code
generator to inline the subsystem unconditionally.

Configure Subsystem to Inline Code

To configure your subsystem for inlining:
1 Right-click the Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat
as atomic unit. This option makes the subsystem nonvirtual. On the Code
Generation tab, the Function packaging option is now available.

If the system is already nonvirtual, the Function packaging option is already
selected.

3 Click the Code Generation tab and select Auto or Inline from the Function
packaging parameter.

6-7
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E Functien Block Parameters: AtomicSubsysl @I
Subsystem
Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.
- Code Generation
Function packaging: Ihuto -
& [ oK l I Cancel ‘ I Help Apply

4  Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

When you generate code from your model, the code generator inlines subsystem code
within model . c or model.cpp (or in its parent system's source file). You can identify
this code by system/block identification tags, such as:

/* Atomic SubSystem Block: <Root>/AtomicSubsysl */

Exceptions to Inlining

There are certain cases in which the code generator does not inline a nonvirtual
subsystem, even though the Inline option is selected.

+ If the subsystem is a function-call subsystem that is called by a noninlined S-function,
the Inline option is ignored. Noninlined S-functions make calls by using function
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pointers. Therefore, the function-call subsystem must generate a function with all
arguments present.

+ In a feedback loop involving function-call subsystems, the code generator forces one of
the subsystems to be generated as a function instead of inlining it. Based on the order
in which the subsystems are sorted internally, the software selects the subsystem to
be generated as a function.

+ If a subsystem is called from an S-function block that sets the option
SS_OPTION_FORCE_NONINLINED_FCNCALL to TRUE, it is not inlined. When user-
defined Async Interrupt blocks or Task Sync blocks are present, this result might
occur. Such blocks must be generated as functions. These blocks are located in the
vxlibl block library and use the SS_OPTION_FORCE_NONINLINED_ FCNCALL option.

This library demonstrates integration with an example RTOS (VxWorks).?

Note: You can use the blocks in the vxlibl on page 5-2 library (Async Interrupt and
Task Sync) for simulation and code generation. These blocks provide starting point
examples to help you develop custom blocks for your target environment.

3. VxWorks is a registered trademark of Wind River Systems, Inc.

6-9
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Generate Subsystem Code as Separate Function and Files

6-10

To generate both a separate subsystem function and a separate file for a subsystem in a
model:

1

Right-click a Subsystem block. From the context menu, select Block Parameters
(Subsystem).

In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat as
atomic unit. On the Code Generation tab, the Function packaging parameter
is now available.

Click the Code Generation tab and select Nonreusable function from the
Function packaging parameter. The Nonreusable function option enables two
parameters:

+ The “Function name options” parameter controls the naming of the generated
function.
The “File name options” parameter controls the naming of the generated file.
Set the Function name options parameter.

Set the File name options parameter to a value other than Auto. If you are
generating a reusable function for your subsystem, see “Generate Reusable Function
for Identical Subsystems Within a Model” on page 6-11 or “Generate Reusable

Code for Subsystems Shared Across Models” on page 6-28.

Click Apply and close the dialog box.
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Generate Reusable Function for Identical Subsystems Within a
Model

In the Subsystem Parameters dialog box, the Function packaging parameter option
Nonreusable function generates functions that use global data. The Reusable
function option generates reusable functions that have data passed as arguments
(enabling them to be reentrant). Selecting Reusable function generates a function
with arguments that allows the subsystem code to be shared by other instances of it in
the model. This action supports less code instead of replicating the code for each instance
of a subsystem or each time it is called.

To determine reusability of the subsystem code, the code generator performs a checksum
to determine if subsystems are identical. The generated function has arguments, for
example, for block inputs and outputs (rtB_%*), continuous states (rtDW_*), parameters
(rtP_>*).

Note: In the generated code, the call interface is subject to change from release to
release. Therefore, do not directly call reusable functions from external code.

To generate one reusable function for identical subsystems within a model:
1  Right-click the Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat as
atomic unit. On the Code Generation tab, the Function packaging menu is now
available.

If the subsystem is already nonvirtual, the Function packaging menu is already
selected.

3 Click the Code Generation tab and select Reusable function for the Function
packaging parameter.

6-11
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E Functien Block Parameters: AtomicSubsysl @I
Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

- Code Generation

Function packaging: [Reusable function v]

Function name options: ’Auto v]

File name options: |Auto -
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For more information about this setting, see “Considerations for Function Packaging

Options Auto and Reusable function” on page 6-13.

Set the function name using the “Function name options” parameter.

Note: If you do not choose Auto, for other Subsystem blocks that you want to share
this code, specify the same function name for those Subsystem blocks.

Set the file name using the “File name options” parameter to a value other
than Auto. If your generated code is under source control, a value other than
Auto prevents the generated file name from changing due to unrelated model

modifications.

Note: For other Subsystem blocks that you want to share this code, specify the same

file name for those Subsystem blocks.

Click Apply and close the dialog box.
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For a summary of code reuse limitations, see “Code Reuse Limitations for Subsystems”
on page 6-17.

Considerations for Function Packaging Options Auto and Reusable
function

When you want multiple instances of a subsystem to be represented as one reusable
function, you can designate each one of them as Auto or as Reusable function.

Use one or the other, because using both creates two reusable functions, one for each
specification. The outcomes of these choices differ only when reuse is not possible.
Selecting Auto does not allow control of the function or file name for the subsystem code.

The Reusable function and Auto options both try to determine if multiple instances
of a subsystem exist and if the code can be reused. When reuse is not possible, there are
differences in the options behavior:

+ Auto yields inlined code. If circumstances prohibit inlining, then the generated code is
separate functions for each subsystem instance.

+ Reusable function yields a separate function with arguments for each subsystem
instance in the model.

Code Reuse for Subsystems with Mask Parameters

The code generator can produce reusable (reentrant) code for a model containing
identical atomic subsystems. Selecting the Reusable function option for Function
packaging enables such code reuse, and causes a single function with arguments to be
generated that is called when an identical atomic subsystem executes. See “Subsystems”
for details and restrictions on the use of this option.

Mask parameters become arguments to reusable functions. However, for reuse to occur,
each instance of a reusable subsystem must declare the same set of mask parameters.
If, for example subsystem A has mask parameters b and K, and subsystem B has mask
parameters € and K, then code reuse is not possible, and the code generator produces
separate functions for A and B.

6-13
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Optimize Code for Identical Nested Subsystems

The Function packaging parameter Auto option can optimize code in situations in
which identical subsystems contain other identical subsystems, by both reusing and
inlining generated code. Suppose a model, such as the one shown in Reuse of Identical
Nested Subsystems, contains identical subsystems Al and A2. Al contains subsystem
B1, and A2 contains subsystem B2, which are identical. In such cases, the Auto option
causes one function to be generated which is called for both A1 and A2. This function
contains one piece of inlined code to execute B1 and B2. This optimization generates less
code which improves execution speed.

Speciol Cose Optimization:

When B1=82 und A1=A2, selecting the Auto
option inlines code for B within code for function A

Al

Q—P—I- B1 |—W™
O—

gl B2 | —D

A2

Reuse of Identical Nested Subsystems

6-14
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Generate Reusable Code for Subsystems Containing S-Function
Blocks

There are several requirements that need to be met in order for subsystems containing S-
function blocks to be reused. For the list of requirements, see “S-Functions That Support
Code Reuse” on page 24-152.

When you select the Reusable function option, two additional options are enabled,
Function name options and File name options. If you use these fields to enter a
function name and/or a file name, you must specify exactly the same function name and
file name for each instance of identical subsystems for the code generator to reuse the
subsystem code. For an example, follow the procedure in “Generate Reusable Function
for Identical Subsystems Within a Model” on page 6-11.

6-15
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Generate Reusable Code from Stateflow Charts

You can generate reusable code from a Stateflow chart, or from a subsystem containing a
chart, except when the Stateflow chart contains exported graphical functions.

6-16
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Code Reuse Limitations for Subsystems

The code generator uses a checksum to determine whether subsystems are identical and
reusable. Subsystem code is not reused, if:

In blocks and data objects, you use symbols to specify dimensions.

A port used by multiple instances of a subsystem has different sample times, data
types, complexity, frame status, or dimensions across the instances.

The output of a subsystem is marked as a global signal.
Subsystems contain identical blocks with different names or parameter settings.

The output of a subsystem is connected to a Merge block, and the output of the Merge
block is a custom storage class that is implemented in the C code as memory that is
nonaddressable (for example, BitField).

The input of a subsystem is nonscalar and has a custom storage class that is
implemented in the C code as memory that is nonaddressable.

A masked subsystem has a parameter that is nonscalar and has a custom storage
class that is implemented in the C code as memory that is nonaddressable.

A function-call subsystem uses mask parameters of any kind when you set the model
configuration parameter “Default parameter behavior” to Tunable. To reuse the
masked function-call subsystem, you can place the masked subsystem inside a new
atomic subsystem without a mask, and move the Trigger block from the masked
subsystem into the atomic subsystem.

A block in the subsystems uses a partially tunable expression. Some partially tunable
expressions can disable code reuse.

Partially tunable expressions are expressions that contain one or more tunable
variables in addition to an expression that is not tunable. For example, suppose
that you create the tunable variable K with value 15.23 and the tunable variable P
with value [5;7;9]. The expression K+P" is a partially tunable expression because
the expression P* is not tunable. For more information about tunable expression
limitations, see “Tunable Expression Limitations” on page 14-49.

If you select Reusable function, and the code generator determines that you cannot
reuse the code for a subsystem, it generates a separate function that is not reused. The
code generation report might show that the separate function is reusable, even if only
one subsystem uses it. If you prefer that subsystem code be inlined in such circumstances
rather than deployed as functions, choose Auto for the Function packaging option.

6-17
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Blocks That Prevent Code Reuse

Use of the following blocks in a subsystem can also prevent the subsystem code from
being reused:
* Scope blocks (with data logging enabled)

* S-Function blocks that fail to meet certain criteria (see “S-Functions That Support
Code Reuse” on page 24-152)

* To File blocks (with data logging enabled)
* To Workspace blocks (with data logging enabled)

Code Reuse Limitations for Subsystems Shared Across Referenced Models

The code generator uses a checksum to determine whether reusable library subsystems
are identical. The code generator places the reusable library subsystem code in the
shared utilities folder, and the reusable code is independent of the generated code of the
top model or the referenced model. For example, the reusable library subsystem code
does not include model .h or model types.h.

Reusable code that is generated to the shared utilities folder and is dependent on the
model code does not compile. If the code generator determines that the reusable library
subsystem code is dependent on the model code, the reusable subsystem code is not
generated to the shared utilities folder. The following cases can generate code that is
dependent on the model code, when the reusable library subsystem:

+  Contains a block that uses time-related functionality, such as a Step block, or
continuous time or multirate blocks.

*  Contains one or more Model blocks.

* Contains subsystems that are not inlined or a reusable library subsystem.

+ Contains a signal that is not an Auto storage class. Variables of non-Auto storage
classes are generated to model .h.

+ Contains a parameter that is not an Auto storage class.

* Contains a user-defined type where Data Scope is not set to Exported. The code
generator might place the type definition in model types.h.

+ Is a variant subsystem that generates preprocessor conditionals. Preprocessor
directives defining the variant objects are included in model_ types.h.
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Related Examples
. “Determine Why Subsystem Code Is Not Reused” on page 6-36
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Code Reuse For Subsystems Shared Across Models

6-20

To reuse common functionality, you can include multiple instances of a subsystem:

*  Within a single model, which is a top model or part of model reference hierarchy
* Across multiple referenced models in a model reference hierarchy

* Across multiple top models that contain Model blocks

* Across multiple top models that do not include Model blocks

To generate a reusable function for a subsystem which is included in multiple models:

+ If the subsystem is in a model reference hierarchy, set the configuration parameter,
“Shared code placement” to Auto. Otherwise, for each model that uses the subsystem,
set Shared code placement to Shared location. The Shared code placement
parameter is in the Configuration Parameters dialog box, on the Code Generation >
Interface pane.

* The subsystem must be defined in a library and configured for reuse. This subsystem
is referred to as a reusable library subsystem. For more information, see “Reusable
Library Subsystem” on page 6-21.

For an example, see “Generate Reusable Code for Subsystems Shared Across Models” on
page 6-28.

The code generator performs a checksum to determine reusability. There are cases when
the code generator cannot reuse subsystem code. For more information, see “Code Reuse
Limitations for Subsystems” on page 6-17.

Related Examples
. “Determine Why Subsystem Code Is Not Reused” on page 6-36
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Reusable Library Subsystem

A reusable library subsystem is a subsystem included in a library that is configured for
reuse. The Subsystem parameters must be set as follows:

* Treat as an atomic unit is selected.

* On the Code Generation tab:

* Function packaging is set to Reusable function.

Function name options

and File name options are set to Auto or Use subsystem name.

For more information on creating a library, see “Libraries”. For an example of creating a
reusable library subsystem, see “Generate Reusable Code for Subsystems Shared Across
Models” on page 6-28.

Code Generation of a Reusable Library Subsystem

For incremental code generation, if the reusable library subsystem changes, a rebuild
of itself and its parents occurs. During the build, if a matching function is not found, a
new instance of the reusable function is generated into the shared utilities folder. If a
different matching function is found from previous builds, that function is used, and a
new reusable function is not emitted.

For subsequent builds, unused files are not replaced or deleted from your folder. During
development of a model, when many obsolete shared functions exist in the shared
utilities folder, you can delete the folder and regenerate the code. If all instances of

a reusable library subsystem are removed from a model reference hierarchy and you
regenerate the code, the obsolete shared functions remain in the shared utilities folder
until you delete them.

If a model changes such that the change might cause different generated code for the
subsystem, a new reusable function is generated. For example, model configuration
parameters that modify code comments might cause different generated code for the
subsystem even if the reusable library subsystem did not change.

6-21
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Reusable Library Subsystem Code Placement and Naming

The code generator uses checksums to determine reusability. The generated code of a
reusable library subsystem is independent of the generated code of the model. Code for
the reusable library subsystem is generated to the shared utility folder, slprj/target/
_sharedutils, instead of the model reference hierarchy folders. The generated code for
the supporting types, which are generated to the .h file, are also in the shared utilities
folder.

In the Subsystem Parameters dialog box, the Function name options and File name
options must be set to Auto or Use subsystem name. For unique naming, reusable
function names have a checksum appended to the reusable library subsystem name.
For example, the code and files for a subsystem, SS1, which links to a reusable library
subsystem, RLS, might be:

*  Function name: RLS_mgdj Ingd
* File name: RLS_mgdjInd.c and RLS _mgdjiInd.h

Reusable Library Subsystem in the Top Model

In a model reference hierarchy, if an instance of the reusable library subsystem is in

the top model, then on the Model Referencing pane of the Configuration Parameters
dialog box, you must select the Pass fixed-size scalar root input by value for code
generation parameter. If you do not select the parameter, a separate shared function is
generated for the reusable library subsystem instance in the top model, and a reusable
function is generated for instances in the referenced models.

Reusable Library Subsystem Connected to Root Outport

If a reusable library subsystem is connected to the root outport, reuse does not happen
with identical subsystems that are not connected to the root outport. However, you
can set Pass reusable system outputs as to Individual arguments on the
Optimizations > Signals and Parameters pane to make sure that reuse occurs
between these subsystems. This parameter requires an Embedded Coder license.
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Code Generation of Constant Parameters

The code generator attempts to generate constant parameters to the shared utilities
folder first. If constant parameters are not generated to the shared utilities folder, they
are defined in the top model in a global constant parameter structure. The declaration of
the structure, ConstParam_model, is in model .h:

/* Constant parameters (auto storage) */
typedef struct {
/* Expression: [1 2 3456 7]
* Referenced by: "<Root>/Constant”
*/
real_T Constant_Value[7];

/* Expression: [7 6 54 3 2 1]
* Referenced by: "<Root>/Gain®
*/
real_T Gain_Gain[7];
} ConstParam_model ;
The definition of the constant parameters, model constP, is in:

/* Constant parameters (auto storage) */
const ConstParam_model model_ConstP = {
/* Expression: [1 2 3 456 7]
* Referenced by: "<Root>/Constant”
*/
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 },

/* Expression: [7 6 5 4 3 2 1]
* Referenced by: "<Root>/Gain”
*/
{7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 }
}:
The model constP is passed as an argument to referenced models. For more
information on how shared constants are generated, see “Shared Constant Parameters
for Code Reuse” on page 6-24.
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You can share the generated code for constant parameters across models if:

+ Constant parameters are shared in a model reference hierarchy, or

* On the Code Generation > Interface pane, the model configuration parameter
“Shared code placement” is set to Shared location.

If you do not want to generate shared constants, and Shared code placement is set
to Shared location, set the parameter GenerateSharedConstants to off. For
example, to turn off shared constants for the current model, in the Command Window,
type the following.

set_param(gcs, "GenerateSharedConstants®, "off");

The shared constant parameters are generated individually to the const_params.c file,
which is placed in the shared utilities folder slprj/target/_sharedutils.

For example, if a constant has multiple uses within a model reference hierarchy where
the top model is named topmod, the code for the shared constant is as follows:

* In the shared utility folder, slprj/grt/_sharedutils, the constant parameters
are defined in const_params.c and named rtCP_pooled_appended to a unique
checksum:

extern const real_T rtCP_pooled_Ifcjjmohiecj[7];
const real_T rtCP_pooled_Ifcjjmohiecj[7] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

extern const real_T rtCP_pooled_ppphohdbfcbal[7];
const real_T rtCP_pooled_ppphohdbfcba[7] = { 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 };

* In top_model_private.h or in a referenced model, ref_model_private.h, for
better readability, the constants are renamed as follows:

extern const real_T rtCP_pooled_Ifcjjmohiecj[7];
extern const real_T rtCP_pooled_ppphohdbfcbal[7];

#define rtCP_Constant_Value rtCP_pooled_Ifcjjmohiecj /* Expression: [1 2 3 45 6 7]

* Referenced by: "<Root>/Constant”*/
#define rtCP_Gain_Gain rtCP_pooled_ppphohdbfcba /* Expression: [7 6 5 4 3 2 1]

* Referenced by: "<Root>/Gain® */

* In topmod.c or refmod.c, the call site might be:

for (i =0; i <7; i++) {
topmod_Y.Outl[i] = (topmod_U.Inl + rtCP_Constant_ Value[i]) * rtCP_Gain_Gain[i];
}
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The code generator attempts to generate all constants as individual constants to the
const_params.c file in the shared utilities folder. Otherwise, constants are generated
as described in “Code Generation of Constant Parameters” on page 6-23.

Suppress Shared Constants in the Generated Code

You can choose whether or not the code generator produces shared constants and

shared functions. You may want to be able to keep the code and data separate between
subsystems, or you may find that sharing constants results in a memory shortage during
code generation.

You can change this parameter programmatically using the parameter
GenerateSharedConstants with set_param and get_param.

In the following example, when GenerateSharedConstants is set to on, the

code generator defines the constant values in the_shareduti Is folder in the
const_params.c file. When GenerateSharedConstants is set to off, the code
generator defines the constant values in a nonshared area, in the model_ert_rtw file in
the model_data.c file.

Open the model rtwdemo_throttlecntrl:

1 3 = rgst
pos_ragst pos_rq
os_cmd > 1
s pos_cmd_one D
pos_cmd_one
(T)——»{mk
fok_1
fok_1 »{pos_cmd_one
Pl_ctrl_1 Throt—Param Throt_Param , ThrotComm
Define_Throt_Param )0k cmd two ThrotComm1
| rgst
Pos_Command_Arbitration
0s_cmd w2
= pos_cmd_two pﬂS%tWﬂ
(2 }fbk 5 » bk -
fok 2 —
PI_ctrl_2

In the Configuration parameters dialog box, on the Code Generation > Interface
pane, verify that “Shared code placement” is set to Shared location. If Shared
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code placement is set to Auto, the GenerateSharedConstants setting is ignored.
If you try to set the parameter value, an error message appears. The default value of
GenerateSharedConstants is on.

In the Command Window, set GenerateSharedConstants to on:

>> set_param("rtwdemo_throttlecntrl®, "GenerateSharedConstants®,"on")

You see the shared constant definitions in the folder slprj/grt/_sharedutils, in the
file const_params.c:

extern const real_T rtCP_pooled_H4eTKtECwveN[9];
const real_T rtCP_pooled_H4eTKtECwveN[9] = { 1.0, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6,
0.75, 1.0 } ;

extern const real_T rtCP_pooled_SghuHxKVKGHD[9];
const real_T rtCP_pooled_SghuHxKVKGHD[9] = { -1.0, -0.5, -0.25, -0.05, 0.0, 0.05,

0.25, 0.5, 1.0 } ;

extern const real_T rtCP_pooled_WqWb2t17NA2R[7];
const real_T rtCP_pooled_Wgwb2t17NA2R[7] = { -1.0, -0.25, -0.01, 0.0, 0.01, 0.25,

1.03%};

extern const real_T rtCP_pooled_YgnalOwM3c14[7];
const real_T rtCP_pooled_YgnalOwM3c14[7] = { 1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0

¥ -
In the Command Window, set GenerateSharedConstants to off:

>> set_param("rtwdemo_throttlecntrl”, "GenerateSharedConstants”, "off")

You can see the unshared constants in the folder rtwdemo_throttlecntrl_grt_rtw,
in the file rtwdemo_throttlecntrl_data.c:

/* Constant parameters (auto storage) */
const ConstP_rtwdemo_throttlecntrl_T rtwdemo_throttlecntrl_ConstP = {
/* Pooled Parameter (Expression: P_OutMap)
* Referenced by:
* "<S2>/Proportional Gain Shape”
* "<S3>/Proportional Gain Shape”
*/
{1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0 },

/* Pooled Parameter (Expression: P_InErrMap)
* Referenced by:
* "<S2>/Proportional Gain Shape*
* "<S3>/Proportional Gain Shape”
*
/
{-1.0, -0.25, -0.01, 0.0, 0.01, 0.25, 1.0 },

/* Pooled Parameter (Expression: I_OutMap)
* Referenced by:
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* "<S2>/Integral Gain Shape®

* "<S3>/Integral Gain Shape®

*

/
{10, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6, 0.75, 1.0 },
/* Pooled Parameter (Expression: I_InErrMap)

* Referenced by:

* "<S2>/Integral Gain Shape®

* "<S3>/Integral Gain Shape®

*

/
{-1.0, -0.5, -0.25, -0.05, 0.0, 0.05, 0.25, 0.5, 1.0 }
}:

Shared Constant Parameters Limitations

No shared constants or shared functions are generated for a model when:

* The model has a Code Replacement Library (CRL) that is specified for data
alignment.

+ The model is specified to replace data type names in the generated code.
* The Memory Section for constants is MemVolati le or MemConstVolatile.
* The parameter GenerateSharedConstants is set to off.

Individual constants are not shared, if:

* A constant is referenced by a non-inlined S-function.

* A constant has a user-defined type where Data Scope is not set to Exported.
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Generate Reusable Code for Subsystems Shared Across Models

This example shows how to configure a reusable library subsystem and generate a
reusable function for a subsystem shared across referenced models. The result is reusable
code for the subsystem, which is generated to the shared utility folder (slprj/target/
_sharedutils).

In this section...

“Create a reusable library subsystem.” on page 6-28
“Create the example model.” on page 6-31
“Set configuration parameters of the top model.” on page 6-33

“Create and propagate a configuration reference.” on page 6-33

“Generate and view the code.” on page 6-34

Create a reusable library subsystem.

1 In the Simulink Editor, select File > New > Library. Open rtwdemo_ssreuse
to copy and paste subsystem SS1 into the Library Editor. This action loads the
variables for SS1 into the base workspace. Rename the subsystem block to RLS.
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'Pi Library: ssreuselib EI@
File Edit View Display Diagram Analysis Help
HE =
[z ~ = T} @
Model Browser = ssreuselib
ssreuselib (3] ssreuselib M
E3
Ain1
Outip
Ainz
RLS
« B
Ready 100%

2 Click the Subsystem block and press Ctrl+U to view the contents of subsystem RLS.
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'Pi Library: ssreuselib/RLS EI@

File Edit View Display Diagram Analysis Help
E-Bae e 4 @8 -

RLS

4
i

Model Browser
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(O} Sum
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gl  O— Y
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Lookup Table
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« A
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To configure the subsystem, in the Library editor, right-click RLS. In the context
menu, select Block Parameters(Subsystem). In the Subsystem Parameters dialog
box, choose the following options:

Select Treat as an atomic unit.

On the Code Generation tab:

+ Set Function packaging to Reusable function.
+ Set Function name options and File name options to Auto.
Click Apply and OK.

Save the reusable library subsystem as ssreusel ib, which creates a file,
ssreuselib._slx.




Generate Reusable Code for Subsystems Shared Across Models

Create the example model.

1

Create a model which includes one instance of RLS from ssreuselib. Name
this subsystem SS1. Add another subsystem and name it SS2. Name the model

ex_modell.
[Pa| ex_modell
(1 } »In1
In1 outt—»(1 )
(2 } »in2 Qut1
In2 |E
551
Lafind
outtk——»( 2 )
»in2 Out2
552

Create another model which includes one instance of RLS from ssreuselib. Name

this subsystem SS1. Add another subsystem and name it SS3. Name the model

ex_model2.
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ex_model?.
L1} » In1
In1 outt—»(1 )
@ iz Out
In2 |E
581
# In1
outt—(2 )
»in2 Qut2
8583

3 Create a top model with two model blocks that reference ex_modell and
ex_model2. Save the top model as ex_mdlref_ssreuse.

ﬂt_mdllef_ssreuse 3

ex_maodel1 ex_model2
(I)—> In outt i1 Outt —p-@
In1 Qut1
In2 Out2 # In2 Out2 —F
In2 Out2
Modell Model2
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Set configuration parameters of the top model.

1

7

8

With model ex_mdlref_ssreuse open in the Simulink Editor, select Simulation
> Model Configuration Parameters to open the Configuration Parameters dialog
box.

On the Solver pane, specify the Type as Fixed-step.

On the Optimization > Signals and Parameters pane, set “Pass reusable
subsystem outputs as” to Individual arguments.

On the Model Referencing pane, select Pass fixed-size scalar root inputs by
value for code generation.

On the Code Generation > Report pane, select Create code generation report
and Open report automatically.

On the Code Generation > Interface pane, set the “Shared code placement” to
Shared location.

On the Code Generation > Symbols pane, set the Maximum identifier length
to 256. This step is optional.

Click Apply and OK.

Create and propagate a configuration reference.

1

In the Simulink Editor, select View > Model Explorer to open the Model
Explorer. In the left navigation column of the Model Explorer, expand the
ex_mdlref_ssreuse node.

Right-click Configuration and select Convert to Configuration Reference.

In the Convert Active Configuration to Reference dialog box, click OK. This
action converts the model configuration set to a configuration reference,
Simulink.ConfigSetRef, and creates the configuration reference object,
configSetObj, in the base workspace.

In the left navigation column, right-click Reference (Active) and select Propagate
to Referenced Models.

In the Configuration Reference Propagation to Referenced Models dialog box, select
the referenced models in the list. Click Propagate.

Now, the top model and referenced models use the same configuration reference,
Reference (Active), which points to a model configuration reference object,
configSetObj, in the base workspace. When you save your model, you also need to
export the configSetObj to a MAT-file.
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Generate and view the code.

To generate code, in the Simulink Editor, press Ctrl-B. After the code is generated,
the code generation report opens.

To view the code generation report for a referenced model, in the left navigation
pane, in the Referenced Models section, select ex_modell. The code generation
report displays the generated files for ex_model 1.

In the left navigation pane, expand the Shared files. The code generator uses
the reusable library subsystem name and a unique identifier to name the reused
function. The code for subsystem SS1 is in RLS_9NCnbXn8.c and RLS_9NCnbXn8.h.

“ Code Generation Report
& & Find:
Contents

Summary

Subsystem Report
Traceability Report

Static Code Metrics Report

Code Replacements Report

Generated Code

[-1 Model files
ex_modell.c
ex_modell.h
ex_modell_private.h
ex_modell_types.h

[-] Shared files
S ot

RLS_9NCnb¥n8.h
lookl_binlxpw.c
lookl_binlxpw.h
model_reference_types.h
rtwiypes.h

44 % Match Case

File: RLS _9NCnbXn8.c

'ex modsl1i'.

=N N ()

m

£ * .2
7 * 7 (R2014b Prersleass) 20-Jun-2014
8 * ue Jul 01 11:03:37 2014
g 4

11 #include "RLS_SNCnbXn8.h"

13 J/* Output and vpdate for atomic system: 'RLS' ('ssreusslib:1') */

23 /*

z4 * File trailer for
25+

26 + [EQF]

5 rtp_v[11], const real T rtp_x[11])

{'ssreuselib:4') incorporates:

4 wvoid RLS5_SNCnbXng(real T rtu Inl, real T rtu In2, real T *rty Outl, const real T
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4 Click Back and navigate to the ex_model2 code generation report. ex_model2
uses the same source code, RLS_9NCnbXn8.c and RLS_9NCnbXn8.h, as the code for
ex_modell. Your subsystem function and file names will be different.

Related Examples
. “Determine Why Subsystem Code Is Not Reused” on page 6-36

“Generate Reusable Function for Identical Subsystems Within a Model” on page
6-11

More About

. “Code Generation of Subsystems” on page 6-2
. “Code Reuse For Subsystems Shared Across Models” on page 6-20
. “Code Reuse Limitations for Subsystems” on page 6-17

. “Libraries”
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Due to the limitations described in “Code Reuse Limitations for Subsystems” on page
6-17, the code generator might not reuse generated code as you expect. To determine why
code generated for a subsystem is not reused, see “Review Subsystems Section of HTML
Code Generation Report” on page 6-36. If you cannot determine why based on the

report, see “Compare Subsystem Checksum Data” on page 6-36.

Review Subsystems Section of HTML Code Generation Report

If you determine that the code generator does not generate code for a subsystem as
reusable code, and you specified the subsystem as reusable, examine the Subsystems
section of the HTML code generation report (see “Generate a Code Generation Report” on
page 20-5). The Subsystems section contains:

* A table that summarizes how nonvirtual subsystems were converted to generated
code.

+ Diagnostic information that describes why the contents of some subsystems were not
generated as reusable code.

The Subsystems section also indicates the mapping of each noninlined subsystem in the
model to functions or reused functions in the generated code. For an example, open and
build the rtwdemo_atomic model.

Compare Subsystem Checksum Data

You can determine why subsystem code is not reused by accessing and comparing
subsystem checksum data. The code generator determines whether subsystems are
identical by comparing subsystem checksums, as noted in “Code Reuse Limitations for
Subsystems” on page 6-17. For subsystem reuse across referenced models, this procedure
might not catch every difference.

Consider the model, rtwdemo_ssreuse. SS1 and SS2 are instances of the same
subsystem. In both instances the subsystem parameter Function packaging is set to
Reusable function.
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Use the method, Simul ink.SubSystem.getChecksum, to get the checksum for a
subsystem. Compare the results to determine why code is not reused.

1

Open the model rtwdemo_ssreuse. Save a copy of the model in a folder where you
have write access.

In the model window, select subsystem SS1. In the command window, enter

SS1 = gcb;

In the model window, select subsystem SS2. In the command window, enter

SS2 = gcb;

Use the method, Simul ink.SubSystem.getChecksum, to get the checksum for
each subsystem. This method returns two output values: the checksum value and
details on the input used to compute the checksum.

[chksuml, chksuml_details] =
Simulink.SubSystem. getChecksum(SSl)
[chksum2, chksum2_details] =
Simulink.SubSystem. getChecksum(SSZ)

Compare the two checksum values. They should be equal based on the subsystem
configurations.

isequal (chksuml, chksum2)
ans =
1

To see how you can use Simul ink.SubSystem.getChecksum to determine why the
checksums of two subsystems differ, change the data type mode of the output port of
SS1 so that it differs from that of SS2.
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a Look under the mask of SS1. Right-click the subsystem. In the context menu,
select Mask > Look Under Mask.

b Inthe block diagram of the subsystem, double-click the Lookup Table block to
open the Subsystem Parameters dialog box.

¢ Click Data Types.
d Select Saturate on integer overflow and click OK.

Get the checksum for SS1. Compare the checksums for the two subsystems. This
time, the checksums are not equal.

[chksuml, chksuml_details] =
Simulink_SubSystem. getChecksum(SSl)
isequal (chksuml, chksum2)
ans =

0
After you determine that the checksums are different, find out why. The Simulink
engine uses information, such as signal data types, some block parameter
values, and block connectivity information, to compute the checksums. To
determine why checksums are different, you compare the data used to compute the
checksum values. You can get this information from the second value returned by
Simulink.SubSystem.getChecksum, which is a structure array with four fields.

Look at the structure chksuml_details.

chksuml_details

chksuml_details =
ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumltems: [287x1 struct]
InterfaceChecksumltems: [53x1 struct]

ContentsChecksum and InterfaceChecksum are component checksums of the
subsystem checksum. The remaining two fields, ContentsChecksumltems and
InterfaceChecksumltems, contain the checksum details.

Determine whether a difference exists in the subsystem contents, interface, or both.
For example:

isequal (chksuml_details.ContentsChecksum.Value, ...
chksum2_details.ContentsChecksum.Value)
ans =
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10

11

12

0
isequal (chksuml_details.InterfaceChecksum.Value, . ..
chksum2_details. InterfaceChecksum.Value)
ans =
1

In this case, differences exist in the contents.
Write a script like the following to find the differences.

idxForCDiffs=[];
for idx = 1:length(chksuml_details.ContentsChecksumltems)
if (~strcmp(chksuml_details.ContentsChecksumltems(idx). ldentifier, ...
chksum2_detai ls.ContentsChecksumltems(idx) . ldentifier))
disp(["ldentifiers different for contents item *, num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
if (ischar(chksuml_details.ContentsChecksumltems(idx).Value))
if (~strcmp(chksuml_details.ContentsChecksumltems(idx).Value, ...
chksum2_detai ls.ContentsChecksumltems(idx).Value))
disp(["Character vector values different for contents item ", num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
end
if (isnumeric(chksuml_details.ContentsChecksumltems(idx).Value))
if (chksuml_details.ContentsChecksumltems(idx).Value ~= ...
chksum2_detai lIs.ContentsChecksumltems(idx) .Value)
disp(["Numeric values different for contents item *, num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
end
end

Run the script. The following example assumes that you named the script
check_details.

check_details
Character vector values different for contents item 202

The results indicate that differences exist for index item 202 in the subsystem
contents.

Use the returned index values to get the handle, identifier, and value details for each
difference found.

chksuml_details.ContentsChecksumltems(202)
ans =
Handle: "rtwdemo_ssreuse/SS1/Lookup Table*

Identifier: "SaturateOnlntegerOverflow"®
Value: “on
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The details identify the Lookup Table block parameter Saturate on integer
overflow as the focus for debugging a subsystem reuse issue.
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Modeling Functions and Callers for Code Generation

7-2

In this section...

“Functions and Callers” on page 7-2
“Input and Output Arguments” on page 7-2
“Function and Function Caller Definitions Across Models” on page 7-3

“Code Generation Files” on page 7-3

Functions and Callers

Use a Simulink Function block and a Function Caller block to instruct the code generator
to generate C functions and function calls in the generated code for encapsulation and
portability. A Simulink Function block is a nonreusable subsystem.

With a Simulink Function block and a Function Caller block, you can:

+  Use nested function calls to call a function from a function.
*  Choose to separate function definitions and calls into different models.
+ Specify SIL and PIL simulations.

+ Integrate code for multiple top models where the Simulink Function block and
Function callers are in different models.

+ Use global data to communicate between a server and its parent model. This data
uses custom storage classes to customize how the data is communicated.

* Model a client and server application using the export functions modeling style.

Simulink Function blocks and Function Caller blocks do not honor the MaxStackSize
parameter.

For more information, see “Simulink Functions”, “Diagnostics Using a Client-Server
Architecture”, and Simulink Function block.

Input and Output Arguments

When you set up your model that contains Simulink Function blocks for code generation:

* Do not define the signals entering and leaving Argument Inport blocks and Argument
Outport blocks in the Simulink Function definition with a storage class.
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+ Do not specify Argument Inport and Argument Outport blocks as test points.

+ If you specify the data type of signals entering and leaving Argument Inport and
Argument Outport blocks as a Simulink. IntEnumType, Simulink_.AliasType
or Simulink.Bus type, then you must specify the arguments as Imported or
Exported, not Auto.

*  The Simulink Function block and the Function Caller blocks must agree in data type,
complexity, dimension, and number of arguments.

For more information, see Argument Inport and Argument Outport.

Function and Function Caller Definitions Across Models

You can define a Simulink Function block and Function Caller block in different models.
When the code generator generates code for a model hierarchy, it can encounter either

a Simulink Function block or a Function Caller block first. If the code generator finds

the Simulink Function block first, the software uses the function definition from the
Simulink Function block. If the code generator then encounters a Function Caller block
that does not match the function definition, the code generator issues an error. This error
prompts you to either change the Function Caller block to match the Simulink Function
block or remove the slprj folder. Verify that the arguments and data types in the
Function Caller blocks match the arguments and data types in the Simulink Function
block. Regenerate code for the models involved.

If the code generator encounters a Function Caller block first, then the code generator
uses the function definition derived from the Function Caller block. If the code generator
then encounters a Simulink Function block with different arguments and data types from
the Function Caller block, the code generator issues a warning message. Verify that the
Function Caller blocks match the Simulink Function block. Regenerate the code where
you have made changes.

Specifying two Simulink Function blocks with the same name is an error. Modify one of
the blocks and remove the slprj folder.

Code Generation Files

In the build folders, the code generator creates different files depending on the setting
you choose.

When one of the following is true, the code generator creates files as shown in the table.
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* The system target file is grt.tlc.

* The system target file is ert.tlc and you do not have an Embedded Coder license.

* The system target file is ert.tlc and you have an Embedded Coder license. For the
Code Generation > Code Placement > File packaging format parameter, select

Modular.

For a model named model and a function named fnl, the code generator creates files
with modular file packaging.

Modular File Packaging of Files for GRT System Target or ERT System Target

_sharedutils

File Folder Contents

model .c model_target_rtw |Calls to the function.

model .h model_target_rtw |This header file includes declarations and
header files for the function, including
fnl_h and fnl_private.h.

fnl.c model_target_rtw |Code for the function.

fnl.h slprj/target/ This header file contains the fnl function

prototype declaration. This header file

1s included in the code generated for the
Function Caller blocks associated with
the function. The fnl.h file placement is
not affected by the Code Generation >
Interface > Shared code placement
parameter value.

fnl_private.h

model _target_rtw

This header file includes declarations and
header files for the function, including
fnl.h.

If you have an Embedded Coder license, set the system target file to ert.tlc, and set
the File packaging format parameter to Compact or Compact (with separate
data fFile), the code generator creates files with compact file packaging.

Compact File Packaging of Files for ERT System Target

File

Folder

Contents

model .c

model _ert_rtw

Calls to the function and code for the
function.




Modeling Functions and Callers for Code Generation

\_sharedutils

File Folder Contents

model . h model_ert_rtw This header file includes declarations and
header files for the function, including
fnl_h.

fnl.h slprj\ert This header file contains the fnl function

prototype declaration. This header file

1s included in the code generated for the
Function Caller blocks associated with
the function. The fnl.h file placement is
not affected by the Code Generation >
Interface > Shared code placement
parameter value.

For more information, see “Generate Code for Functions and Callers” on page 7-6.

More About
“Design Models for Generated Embedded Code Deployment”

“Generate Code for Functions and Callers” on page 7-6

“Entry-Point Functions and Scheduling”
“Configure AUTOSAR Client-Server Communication”

“Simulink Functions in Models”

“Simulink Functions in Referenced Models”

“Simulink Functions”
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Generate Code for Functions and Callers

In this section...

“Generate Code for the Function Definition” on page 7-6

“Generate Code for the Caller Definition” on page 7-8

This example shows how the code generator translates Simulink Function blocks and
Function Caller blocks into C code.

At the command prompt, type rtwdemo_export_functions. This model uses Stateflow
software, but this example reviews only the code generated from the referenced models.

| Exporting Function-Call Subsystems »
Function-Call
Generator >
r &
' tie() -,,,iliﬂm?]} rtwdemo_functions
\—m;') Initialize
resat() [ ) reset
L) »f1 Accumulatort 1) Scope
t_1tic_B() »f2
Accumulator2 > 2 )
t_10 1 )——u1
\. 1onel
Function Scheduler
2 )r—»u2 TicToc10 » 3 )
DCapyfighl 2014-2016 The Math\Works, Im:_D
O o Functions
T3_caller rtwdemo_caller
" y > 4 )

7-6

Caller

Generate Code for the Function Definition

1  Double click rtwdemo_functions. The Simulink Function block is the £3
subsystem defined asy = £3(u).
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o »(1)
Accumulatori
2 -
functiont)
(B . outt
ut function() (D initialize
e . oufp——»(7)
" . : Accumulator2 L L
f1_alg — Stme Witer:
In2 Subtracter M—_p—
Initialize Function
T f2_alg
y = f3{u)
Ind . TicToe »{_ 3 )
TicToc10 P
I () reset
(A2 i
uz
3
util

Reset Function

Copyright 2014-2016 The Math\Works, Inc

2 In the model window, press Ctrl+B.

The code generator creates rtwdemo_functions.c. This file contains the function
definition and initialization.

* The initialization function is:

void f3_Init(void)

{
/* InitializeConditions for UnitDelay: "<S5>/Delay” */
rtDWork_Delay DSTATE = 1;

}

* The primary function is:

/* Output and update for Simulink Function: "<Root>/f3" */
void f3(real_T rtu_u, real_T *rty_y)
{

/* Outport: "<Root>/TicToclO" incorporates:

* UnitDelay: "<S5>/Delay”
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*/
rtY.TicToclO = rtDWork.Delay DSTATE;

/* Gain: "<S5>/Gain” */
rtDWork_Delay DSTATE = (int8_T)(int32_T)-(int32_T)rtY.TicToclO0;

/* FunctionCaller: "<S5>/Function Caller®™ incorporates:

* Inport: "<Root>/U2"

* SignalConversion: "<S5>/TmpLatchAtInlOutportl®

* SignalConversion: "<S5>/TmpSignal ConversionAtuOutportl®
*/

adder_h(rtB.Subtract, rtU.U2, rtu_u, rtB_FunctionCaller);

/* SignalConversion: "<S5>/TmpSignal ConversionAtylnportl® */
*rty_y = rtB.FunctionCaller;

3
/* Output and update for Simulink Function: "<S6>/adder® */

void adder_h(real _T rtu_ul, real T rtu_u2, real_T rtu_u3, real_T *rty_y)

{

/* SignalConversion: "<S7>/TmpSignhal ConversionAtylnportl® incorporates:
* SignalConversion: "<S7>/TmpSignal ConversionAtulOutportl®

* SignalConversion: "<S7>/TmpSignal ConversionAtu20utportl*

* SignalConversion: "<S7>/TmpSignal ConversionAtu3Outportl®

*  Sum: "<S7>/Sum”

*/

*rty_ y = (rtu_ul + rtu_u2) + rtu_u3;

+ The shared header file, £3.h, contains the primary function prototype declaration.

/* Shared type includes */
#include "rtwtypes.h"

extern void f3(real _T rtu_u, real T *rty_y);

Generate Code for the Caller Definition

1  On the rtwdemo_export_functions model, click rtwdemo_caller.
2 Press Ctrl+B.

The code generator creates the files rtwdemo_caller.h and rtwdemo_caller.c in the
folder rtwdemo_caller_ert_rtw.
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rtwdemo_caller.h includes the shared header file, £3.h, which contains the function
prototype declaration.

rtwdemo_caller.c calls the function f3.

/* Output function for RootlnportFunctionCallGenerator: -
<Root>/RootFcnCall_InsertedFor_t_10tic_at outport_1" */
void rtwdemo_caller_t_10tic(const real _T *rtu_u, real_T *rty_y)

{
/* RootlnportFunctionCallGenerator: -
<Root>/RootFcnCall_InsertedFor_t_10tic_at_outport_1" incorporates:
* SubSystem: "<Root>/Subsystem*®
*/
/* FunctionCaller: "<S1>/Function Caller® */
f3C*rtu_u, rty_y);
}

More About
. “Design Models for Generated Embedded Code Deployment”

. “Modeling Functions and Callers for Code Generation” on page 7-2
. “Entry-Point Functions and Scheduling”
. “Configure AUTOSAR Client-Server Communication”
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+ “Code Generation of Referenced Models” on page 8-2

+ “Generate Code for Referenced Models” on page 8-4

* “Code Generation Folder Structure for Model Reference Targets” on page 8-15
+ “Configure Referenced Models” on page 8-16

* “Build Model Reference Targets” on page 8-17

+ “Simulink Coder Model Referencing Requirements” on page 8-18

+ “Storage Classes for Signals Used with Model Blocks” on page 8-22

*  “Inherited Sample Time for Referenced Models” on page 8-25

* “Customize Library File Suffix and File Type” on page 8-27

* “Reusable Code and Referenced Models” on page 8-28

+ “Simulink Coder Model Referencing Limitations” on page 8-32
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Code Generation of Referenced Models
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This section describes model referencing considerations that apply specifically to code
generation by the Simulink Coder. This section assumes that you understand referenced
models and related terminology and requirements, as described in “Overview of Model
Referencing” and associated topics.

When generating code for a referenced model hierarchy, the code generator produces a
stand-alone executable for the top model, and a library module called a model reference
target for each referenced model. When the code executes, the top executable invokes
the model reference targets to compute the referenced model outputs. Model reference
targets are sometimes called Simulink Coder targets.

Be careful not to confuse a model reference target (Simulink Coder target) with other
types of targets:

* Target hardware — A platform for which the Simulink Coder software generates code

+  System target — A file that tells the Simulink Coder software how to generate code
for particular purpose

* Rapid Simulation target (RSim) — A system target file supplied with the Simulink
Coder product

* Simulation target — A MEX-file that implements a referenced model that executes
with Simulink Accelerator™ software

The code generator places the code for the top model of a hierarchy in the code generation
folder and places the code for referenced models in an slprj folder in the code
generation folder. Subfolders in sIprj provide separate places for different types of files.
See “Code Generation Folder Structure for Model Reference Targets” on page 8-15 for
details.

By default, the product uses incremental code generation. When generating code, it
compares structural checksums of referenced model files with the generated code files

to determine whether to regenerate model reference targets. To control when rebuilds
occur, use the configuration parameter Model Referencing > Rebuild. For details, see
“Rebuild”.

In addition to incremental code generation, the Simulink Coder software uses
incremental loading. The code for a referenced model is not loaded into memory until the
code for its parent model executes and needs the outputs of the referenced model. The
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product then loads the referenced model target and executes. Once loaded, the target
remains in memory until it is no longer used.

Most code generation considerations are the same whether or not a model includes
referenced models: the code generator handles the details automatically insofar as
possible. This chapter describes topics that you may need to consider when generating
code for a model reference hierarchy.

If you have a Embedded Coder license, custom targets must declare themselves to be
model reference compliant if they need to support Model blocks. For more information,
see “Support Model Referencing” on page 37-83.
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Generate Code for Referenced Models
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In this section...

“About Generating Code for Referenced Models” on page 8-4
“Create and Configure the Subsystem” on page 8-4

“Convert Model to Use Model Referencing” on page 8-7
“Generate Model Reference Code for a GRT Target” on page 8-11

“Work with Code Generation Folders” on page 8-13

About Generating Code for Referenced Models

To generate code for referenced models, you

Create a subsystem in an existing model.
Convert the subsystem to a referenced model (Model block).
Call the referenced model from the top model.

Generate code for the top model and referenced model.

A b WON —

Explore the generated code and the code generation folder.

You can accomplish some of these tasks automatically with a function called
Simulink.Subsystem.convertToModelReference.

Create and Configure the Subsystem

In the first part of this example, you define a subsystem for the vdp

example model, set configuration parameters for the model, and use the
Simulink.Subsystem.convertToMode IReference function to convert it into two
new models — the top model (vdptop) and a referenced model vdpmu I tRM containing a
subsystem you created (vdpmult).

1 Inthe MATLAB Command Window, create a new working folder wherever you want
to work and cd into it:

mkdir mrexample
cd mrexample

2 Open the vdp example model by typing:
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3

o

vdp
Drag a box around the three blocks outlined in blue below:

? van der Pol Equation
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Choose Create Subsystem from Selection from the Diagram > Subsystem &
Model Reference menu.

A subsystem block replaces the selected blocks.

If the new subsystem block is not where you want it, move it to a preferred location.
Rename the block vdpmult.

Right-click the vdpmult block and select Block Parameters (Subsystem).

The Function Block Parameters dialog box appears.

In the Function Block Parameters dialog box, select Treat as atomic unit, then
click OK.

The border of the vdpmult subsystem thickens to indicate that it is now atomic. An
atomic subsystem executes as a unit relative to the parent model: subsystem block
execution does not interleave with parent block execution. This property makes it
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possible to extract subsystems for use as stand-alone models and as functions in
generated code.

The block diagram should now appear as follows:

van der Pol Equation

¥
— In - — * #!
. wle P10 o 105 p-
— ] In2 Ot
¥ ydpmult . |:|
-
Scope

>
Out2

You must set several properties before you can extract a subsystem for use as a
referenced model. To set the properties,

1
2

FN

Open Model Explorer by selecting Model Explorer from the model's View menu.

In the Model Hierarchy pane, click the symbol preceding the model name to reveal
its components.

Click Configuration (Active) in the left pane.

In the center pane, select Solver.

In the right pane, under Solver Options change the Type to Fixed-step, then

click Apply. You must use fixed-step solvers when generating code, although
referenced models can use different solvers than top models.
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6 In the center pane, select Diagnostics. In the right pane:

a Select the Data Validity tab. In the Signals area, set Signal resolution to
Explicit only.

Alternatively, if you do not want to use Simulink.Signal objects, set Signal
resolution to None.

b Select the Connectivity tab. In the Buses area, set Mux blocks used to
create bus signals to error.

7 Click Apply.

The model now has the properties that model referencing requires.

8 In the center pane, click Model Referencing. In the right pane, set Rebuild to I T
any changes in known dependencies detected. Click Apply. This setting
prevents code regeneration when it is not required.

9 In the vdp model window, choose File > Save as. Save the model as vdptop in your
working folder. Leave the model open.

Convert Model to Use Model Referencing

In this portion of the example, you use the conversion function
Simulink.SubSystem.convertToModelReference to extract the subsystem vdpmult
from vdptop and convert vdpmult into a referenced model named vdpmul€tRM. To see
the complete syntax of the conversion function, type at the MATLAB prompt:

help Simulink.SubSystem.convertToModelReference
For additional information, type:

doc Simulink.SubSystem.convertToModelReference

If you want to see an example of Simul ink.SubSystem.convertToModellReference
before using it yourself, type:

sldemo_mdlref_conversion
Simulink also provides a menu command, Subsystem & Model

Reference > Convert Subsystem to > Referenced Model, that you
can use to convert a subsystem to a referenced model. The command calls
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Simulink.SubSystem.convertToModelReference with default arguments. For more
information, see “Convert a Subsystem to a Referenced Model”.

Extract the Subsystem to a Referenced Model

To use Simul ink.SubSystem.convertToModelReference to extract vdpmult and
convert it to a referenced model, type:

Simulink.SubSystem.convertToModelReference. ..
("vdptop/vdpmult®, “vdpmultRM", ...
"ReplaceSubsystem®, true, "BuildTarget®, "Sim")

This command:

Extracts the subsystem vdpmult from vdptop.

2 Converts the extracted subsystem to a separate model named vdpmultRM and saves
the model to the working folder.

3 In vdptop, replaces the extracted subsystem with a Model block that references
vdpmu I'tRM.

4 Creates a simulation target for vdptop and vdpmul tRM.

The converter prints progress messages and terminates with

ans =
1

The parent model vdptop now looks like this:
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van der Pol Equation
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Note the changes in the appearance of the block vdpmult. These changes indicate that
it is now a Model block rather than a subsystem. As a Model block, it does not have
contents of its own: the previous contents now exist in the referenced model vdpmu I €tRM,
whose name appears at the top of the Model block. Widen the Model block to expose the
complete name of the referenced model.

If the parent model vdptop had been closed at the time of conversion, the converter
would have opened it. Extracting a subsystem to a referenced model does not
automatically create or change a saved copy of the parent model. To preserve the changes
to the parent model, save vdptop.

Right-click the Model block vdpmu Il tRM and choose Open to open the referenced model.
The model looks like this:
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Files Created and Changed by the Converter

The files in your working folder now consist of the following (not in this order).

File

Description

vdptop model file

Top model that contains a Model block where the
vdpmult subsystem was

vdpmu I'tRM model file

Referenced model created for the vdpmult
subsystem

vdpmu I tRM_msf._mexw64

Static library file (Microsoft Windows platforms
only). The file extension is system-dependent and
may differ. This file executes when the vdptop
model calls the Model block vdpmult. When
called, vdpmul t in turn calls the referenced model
vdpmu I tRM.

/slprj

Folder for generated model reference code

Code for model reference simulation targets is placed in the slprj/sim subfolder.
Generated code for GRT, ERT, and other Simulink Coder targets is placed in slprj
subfolders named for those targets. You will inspect some model reference code later
in this example. For more information on code generation folders, see “Work with Code

Generation Folders” on page 8-13.

Run the Converted Model

Open the Scope block in vdptop if it is not visible. In the vdptop window, click the Run
tool or choose Run from the Simulation menu. The model calls the vdpmultRM_ms¥
simulation target to simulate. The output looks like this:
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4| Scope |‘:' = i:hl
File Tools View Simulation Help k]

@ BOP®| =-aA-C- F@-

Ready Offget=0 | T=20.000

Generate Model Reference Code for a GRT Target

The function Simul ink.SubSystem.convertToMode lReference created the model
and the simulation target files for the referenced model vdpmul tRM. In this part of
the example, you generate code for that model and the vdptop model, and run the
executable you create:

Verify that you are still working in the mrexample folder.
If the model vdptop is not open, open it. Make sure it is the active window.

Open Model Explorer by selecting Model Explorer from the model's View menu.

AW N —

In the Model Hierarchy pane, click the symbol preceding the vdptop model to
reveal its components.

(8.}

Click Configuration (Active) in the left pane.

o

In the center pane, select Data Import/Export.
7 In the pane, select Time and Output and clear Data stores. Click Apply.

These settings instruct the model vdptop (and later its executable) to log time and
output data to MAT-files for each time step.

8 Generate GRT code (the default) and an executable for the top model and the
referenced model. For example, in the model, press Ctrl+B.

The Simulink Coder build process generates and compiles code. The current folder now
contains a new file and a new folder:
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File Description

vdptop.exe The executable created by the build process

vdptop_grt_rtw/ The build folder, containing generated code
for the top model

The build process also generated GRT code for the referenced model and placed it in the
slprj folder.

To view a model’s generated code in Model Explorer, the model must be open. To use
the Model Explorer to inspect the newly created build folder, vdptop_grt_rtw:

Open Model Explorer by selecting Model Explorer from the model's View menu.

In the Model Hierarchy pane, click the symbol preceding the model name to reveal
its components.

Click the symbol preceding Code for vdptop to reveal its components.
Directly under Code for vdptop, click This Model.

A list of generated code files for vdptop appears in the Contents pane:

rtmodel .h
vdptop.c
vdptop.h
vdptop.mk
vdptop_private.h
vdptop_types.h

You can browse code by selecting a file of interest in the Contents pane.
To open a file in a text editor, click a filename, and then click the hyperlink that

appears in the gray area at the top of the Document pane. The figure below
illustrates viewing code for vdptop.c, in a text editor. Your code may differ.
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To view the generated code in the HTML code generation report, see “Generate a
Code Generation Report” on page 20-5.

Work with Code Generation Folders

When you view generated code in Model Explorer, the files listed in the Contents
pane can exist either in a build folder or a code generation folder. Model reference code
generation folders (located under the slprj folder), like build folders, are created in
your code generation folder. This process implies certain constraints on when and where
model reference targets are built and on how they are accessed.

The models referenced by Model blocks can be stored anywhere. A given top model can
include models stored on different file systems or in different folders. The same is not
true for the simulation targets derived from these models; under most circumstances,
models referenced by a given top model must be set up to simulate and generate model
reference target code in a single code generation folder. The top and referenced models
can exist anywhere on your path, but the code generation folder is assumed to exist in
your current folder.

This means that, if you reference the same model from several top models, each stored in
a different folder, you must either

+ Always work in the same folder and be sure that the models are on your path

+ Allow separate code generation folders, simulation targets, and Simulink Coder
targets to be generated in each folder in which you work
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The files in such multiple code generation folders are generally quite redundant.
Therefore, to minimize code regeneration of referenced models, choose a specific working
folder and remain in it for all sessions.

As model reference code generated for Simulink Coder targets as well as for simulation
targets is placed in code generation folders, the same considerations as above apply even
if you are generating target applications only. That is, code for all models referenced from
a given model ends up being generated in the same code generation folder, even if it is
generated for different targets and at different times.

Related Examples

. “Specify Instance-Specific Parameter Values for Reusable Referenced Model” on
page 14-61
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Code Generation Folder Structure for Model Reference Targets

Code for models referenced by using Model blocks is generated in folders under the
slprj folder in the code generation folder. The next level within slprj contains parallel

build area subfolders.

The following table lists principal code generation folders and files. In the paths listed,
model is the name of the model being used as a referenced model, and target is the
system target file acronym (for example, grt, ert, rsim, and so on).

Folders and Files

Description

slprj/sim/model/

Simulation target files for referenced models

slprj/sim/model/tmwinternal

MAT-files used during code generation

slprj/target/model/
referenced_model _includes

Header files from models referenced by this
model

slprj/target/model

Model reference target files

slprj/target/model/tmwinternal

MAT-files used during code generation

slprj/sl_proj.tmw

Marker file

slprj/target/_sharedutils

Utility functions for model reference targets,
shared across models

slprj/sim/_sharedutils

Utility functions for simulation targets,
shared across models

If you are building code for more than one referenced model within the same code
generation folder, the model reference files are added to the existing slprj folder.
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Minimize occurrences of algebraic loops by selecting the Minimize algebraic loop
occurrences parameter on the Model Reference pane. The setting of this option
affects only generation of code from the model. See “Platform Options for Development
and Deployment” on page 10-2 in the Simulink Coder documentation for information

on how this option affects code generation. For more information, see “Model Blocks and
Direct Feed through”.

Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you intend to use to compile code generated
from the model. This setting appears on the Signal Attributes pane of the parameter
dialog boxes of blocks that can perform signed integer arithmetic, such as the Product
and n-D Lookup Table blocks.

For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode, the
value of Signed integer division rounds to also affects rounding. For details, see
“Precision”.

When models contain Model blocks, all models that they reference must be configured
to use identical hardware settings. For information on the Model Referencing pane
options, see “Model Configuration Parameters: Model Referencing” and “Configuration
Parameter Requirements”.



Build Model Reference Targets

Build Model Reference Targets

By default, the Simulink engine rebuilds simulation targets before the Simulink Coder
software generates model reference targets. You can change the rebuild criteria or specify
when the engine rebuilds targets. For more information, see “Rebuild”.

The Simulink Coder software generates a model reference target directly from the
Simulink model. The product automatically generates or regenerates model reference
targets, for example, when they require an update.

You can command the Simulink and Simulink Coder products to generate a simulation
target for an Accelerator mode referenced model, and a model reference target for a
referenced model, by executing the slbuild command with arguments in the MATLAB
Command Window.

The Simulink Coder software generates only one model reference target for all instances
of a referenced model. See “Reusable Code and Referenced Models” on page 8-28 for
details.

Reduce Change Checking Time

You can reduce the time that the Simulink and Simulink Coder products spend checking
whether simulation targets and model reference targets need to be rebuilt by setting
configuration parameter values as follows:

* In the top model, consider setting the model configuration parameter Model
Referencing > Rebuild to 1 any changes in known dependencies
detected. (See “Rebuild”.)

* In all referenced models throughout the hierarchy, set the configuration parameter
Diagnostics > Data Validity > Signal resolution to Explicit only or None.
(See “Signal resolution”.)

These parameter values exist in a referenced model's configuration set, not in the
individual Model block. Setting either value for an instance of a referenced model, sets it
for all instances of that model.
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A model reference hierarchy must satisfy various Simulink Coder requirements,
as described in this section. In addition to these requirements, a model referencing
hierarchy to be processed by the Simulink Coder software must satisfy:

*  The Simulink requirements listed in:

“Configuration Requirements for All Referenced Model Simulation”
“Model Structure Requirements”
* The Simulink limitations listed in “Limitations on All Model Referencing”

*  The Simulink Coder limitations listed in “Simulink Coder Model Referencing
Limitations” on page 8-32

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way a top model does, as
described in “Manage a Configuration Set”. By default, every model in a hierarchy has its
own configuration set, which it uses in the same way that it would if the model executed
independently.

Because each model can have its own configuration set, configuration parameter
values can be different in different models. Furthermore, some parameter values

are intrinsically incompatible with model referencing. The response of the Simulink
Coder software to an inconsistent or unusable configuration parameter depends on the
parameter:

*  Where an inconsistency has no significance, the product ignores or resolves the
inconsistency without posting a warning.

*  Where a nontrivial and possibly acceptable solution exists, the product resolves the
conflict silently; resolves it with a warning; or generates an error.

+ If an acceptable resolution is not possible, the product generates an error. You must
then change parameter values to eliminate the problem.

When a model reference hierarchy contains many referenced models that have
incompatible parameter values, or a changed parameter value must propagate to many
referenced models, manually eliminating all configuration parameter incompatibilities
can be tedious. You can control or eliminate such overhead by using configuration
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references to assign an externally-stored configuration set to multiple models. See
“Manage a Configuration Reference” for details.

The following tables list configuration parameters that can cause problems if set

in certain ways, or if set differently in a referenced model than in a parent model.
Where possible, the Simulink Coder software resolves violations of these requirements
automatically, but most cases require changes to the parameters in some or all models.

Configuration Requirements for Model Referencing with All System Targets

Dialog Box Pane

Option

Requirement

Solver Start time Some system targets require the
start time of all models to be zero.

Hardware All options Values must be the same for top

Implementation and referenced models.

Code Generation

System target file

Must be the same for top and
referenced models.

Language

Must be the same for top and
referenced models.

Generate code only

Must be the same for top and
referenced models.

Symbols Maximum identifier length |Cannot be longer for a referenced
model than for its parent model.
Interface Code replacement library |Must be the same for top and

referenced models.

C API options

The C API check boxes must be
the same for top and referenced
models.

ASAP2 interface

Can be on or off in a top model,
but must be oFf in a referenced
model. If it is not, the Simulink

Coder software temporarily sets
it to oFf during code generation.

Configuration Requirements for Model Referencing with ERT System Targets (Requires
Embedded Coder License)
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Dialog Box |Option Requirement
Pane
All Ignore custom storage classes Must be the same for top and
Parameters referenced models.
tab
Symbols Global variables $R token must appear.
Global types
Subsystem methods
Local temporary variables
Constant macros
Signal naming Must be the same for top and
referenced models.
M-function If specified, must be the same for
top and referenced models.
Parameter naming Must be the same for top and
referenced models.
#define naming Must be the same for top and
referenced models.
Interface Support floating-point numbers |Must be the same for both top and
referenced models
Support non-finite numbers If off for top model, must be off
for referenced models.
Support complex numbers If ofF for top model, must be off
for referenced models.
Suppress error status in real- If on for top model, must be on for
time model referenced models.
Code Use owner from data object for |Must be the same for top and
Placement |data definition placement referenced models.

Signal display level

Must be the same for top and
referenced models.

Parameter tune level

Must be the same for top and
referenced models.




Simulink Coder Model Referencing Requirements

Naming Requirements

Within a model that uses model referencing, names of the constituent models can

not collide. When you generate code from a model that uses model referencing, the
Maximum identifier length parameter must be large enough to accommodate the root
model name and the name-mangling text. A code generation error occurs if Maximum
identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a higher-level model
and a symbol within the scope of a referenced model, the symbol from the referenced
model is preserved. Name mangling is performed on the symbol from the higher-level
model.

Embedded Coder Naming Requirements

The Embedded Coder product lets you control the formatting of generated symbols in
much greater detail. When generating code with an ERT target from a model that uses
model referencing:

* The $R token must be included in the Identifier format control parameter
specifications (in addition to the $M token) except for Shared utilities.

* The Maximum identifier length must be large enough to accommodate full
expansions of the $R and $M tokens.

See “Model Configuration Parameters: Code Generation Symbols” for more information.

Custom Target Requirements
If you have an Embedded Coder license, a custom target must meet various requirements

to support model referencing. For details, see “Support Model Referencing” on page
37-83.
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Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without restriction.

However, when you declare signals to be global, you must be aware of how the signal
data will be handled.

A global signal is a signal with a storage class other than Auto:

* ExportedGlobal

+  ImportedExtern

* ImportedExternPointer
* Custom

The above are distinct from Simul inkGlobal signals, which are treated as test points
with Auto storage class.

Global signals are declared, defined, and used as follows:
+ An extern declaration is generated by all models that use a given global signal.
As a result, if a signal crosses a Model block boundary, the top model and the

referenced model both generate extern declarations for the signal.

+  For an exported signal, the top model is responsible for defining (allocating memory
for) the signal, whether or not the top model itself uses the signal.

* Global signals used by a referenced model are accessed directly (as global memory).
They are not passed as arguments to the functions that are generated for the
referenced models.

Custom storage classes also follow the above rules. However, certain custom storage
classes are not currently supported for use with model reference. See “Custom Storage
Class Limitations” for details.

Storage Classes for Parameters Used with Model Blocks

Storage classes are supported for both simulation and code generation, and all except
Auto are tunable. The supported storage classes thus include

+ SimulinkGlobal
+ ExportedGlobal
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+  ImportedExtern
+ ImportedExternPointer
+ Custom

Note the following restrictions on parameters in referenced models:

* Tunable parameters are not supported for noninlined S-functions.

* Tunable parameters set using the Model Parameter Configuration dialog box are
ignored.

Note the following considerations concerning how global tunable parameters are
declared, defined, and used in code generated for targets:

+ A global tunable parameter is a parameter in the base workspace with a storage class
other than Auto.

* An extern declaration is generated by all models that use a given parameter.

+ If a parameter is exported, the top model is responsible for defining (allocating
memory for) the parameter (whether it uses the parameter or not).

*  Global parameters are accessed directly (as global memory). They are not passed as
arguments to the functions that are generated for the referenced models.

*  Symbols for Simul inkGlobal parameters in referenced models are generated
using unstructured variables (rtP_xxxX) instead of being written into the model P
structure. This is so that each referenced model can be compiled independently.

Certain custom storage classes for parameters are not currently supported for model
reference. See “Custom Storage Class Limitations” for details.

Parameters used as Model block arguments must be defined in the referenced model's
workspace. See “Parameterize Instances of a Reusable Referenced Model” in the
Simulink documentation for specific details.

Signal Name Mismatches Across Model Reference Boundary

Within a parent model, the name and storage class for a signal entering or leaving a
Model block might not match those of the signal attached to the root inport or outport
within that referenced model. Because referenced models are compiled independently
without regard to a parent model, they cannot adapt to the possible variations in how
parent models label and store signals.
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The Simulink Coder software accepts all cases where input and output signals in a
referenced model have Auto storage class. When such signals are test pointed or are
global, as described above, certain restrictions apply. The following table describes how
mismatches in signal labels and storage classes between parent and referenced models

are handled:

Relationships of Signals and Storage Classes Across Model Reference Boundary

Referenced Model

Parent Model

Signal Passing Method

Signal Mismatch

Object

Checking
Auto Any storage class Function argument |[None
SimulinkGlobal |Any storage class Function argument  |Signal label
or resolved to Signal mismatch

Global Auto or Global variable Signal label
SimulinkGlobal mismatch
Global Global Global variable Labels and storage

classes must be
identical (else error)

To summarize, the following signal resolution rules apply to code generation:

+ If the storage class of a root input or output signal in a referenced model is Auto (or is

SimulinkGlobal), the signal is passed as a function argument.

*  When such a signal is Simul inkGlobal or resolves to a Simulink.Signal
object, the Signal label mismatch diagnostic is applied.

+ If a root input or output signal in a referenced model is global, it is communicated by
using direct memory access (global variable). In addition,

If the corresponding signal in the parent model is also global, the names and

storage classes must match exactly.

+ If the corresponding signal in the parent model is not global, the Signal label
mismatch diagnostic is applied.

You can set the Signal label mismatch diagnostic to error, warning, or none in the
Diagnostics > Connectivity pane of the Configuration Parameters dialog box.




Inherited Sample Time for Referenced Models

Inherited Sample Time for Referenced Models

See “Sample Times for Model Referencing” in the Simulink documentation
for information about Model block sample time inheritance. In

generated code, you can control inheriting sample time by using
ssSetModelReferenceSampleTimelnheritanceRule in different ways:

* An S-function that precludes inheritance: If the sample time is used in the S-
function's run-time algorithm, then the S-function precludes a model from inheriting
a sample time. For example, consider the following md10utputs code:

static void mdlOutputs(SimStruct *S, Int_T tid)

{
const real _T *u = (const real_T%*)
ssGetlnputPortSignal (S,0);
real T *y = ssGetOutputPortSignal (S,0);
y[0] = ssGetSampleTime(S,tid) * u[0];

}

This mdI0utputs code uses the sample time in its algorithm, and the S-function
therefore should specify

ssSetModelReferenceSampleTimelnheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE) ;

+ An S-function that does not preclude Inheritance: If the sample time is only used for
determining whether the S-function has a sample hit, then it does not preclude the
model from inheriting a sample time. For example, consider the md10utputs code
from the S-function example sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int_T tid)
{

InputRealPtrsType enablePtrs;

int *enabled = ssGetlWork(S);

if (ssGetlnputPortSampleTime
(S,ENABLE_IPORT)==CONTINUOUS_SAMPLE_TIME &&
ssGetlnputPortOffsetTime(S,ENABLE_IPORT)==0.0) {
if (sslisMajorTimeStep(S) &&
sslIsContinuousTask(S, tid)) {
enablePtrs =
ssGetlnputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);
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} else {
int enableTid =
ssGetlInputPortSampleTimelndex(S,ENABLE_1PORT);
if (sslIsSampleHit(S, enableTid, tid)) {
enablePtrs =
ssGetlnputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

if (fenabled) {
InputRealPtrsType uPtrs =
ssGetlInputPortRealSignalPtrs(S,SIGNAL_IPORT);
real T signal = *uPtrs[0];
int i;

for (i = 0; 1 < NOUTPUTS; i++) {
if (sslsSampleHit(sS,
ssGetOutputPortSampleTimelndex(S,i1), tid)) {
real_T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;
}
}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining whether
there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimelnheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE);
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Customize Library File Suffix and File Type

You can control the library file suffix and file type extension that the Simulink Coder
code generator uses to name generated model reference libraries. Use the model
configuration parameter TargetLibSuffix to specify the scheme for the suffix and

extension. The scheme must include a period (). If you do not set this parameter, the
Simulink Coder software names the libraries as follows:

On Windows systems, model rtwlib_lib

On UNIX or Linux® systems, model rtwlib.a
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Reusable Code and Referenced Models

8-28

Models that employ model referencing might require special treatment when generating
and using reusable code. The following sections identify general restrictions and discuss
how reusable functions with inputs or outputs connected to a referenced model's root
Inport or Outport blocks can affect code reuse.

General Considerations

You can generate code for subsystems that contain referenced models using the same
procedures and options described in “Code Generation of Subsystems” on page 6-2.
However, the following restrictions apply to such builds:

+ A top model that uses single-tasking mode and that has a referenced model that
uses multi-tasking mode executes for blocks with the different rates that are not
connected. However, you get an error if the blocks with different rates are connected
by Rate Transition block (inserted either manually or by Simulink).

+  ERT S-functions do not support subsystems that contain a continuous sample time.
* The Simulink Coder S-function target is not supported.

*  The Tunable parameters table (set by using the Model Parameter Configuration
dialog box) is ignored; to make parameters tunable, you must define them as
Simulink parameter objects in the base workspace.

+ All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration available in the
System Target File Browser. However, if the S-function target is selected, Build This
Subsystem and Build Selected Subsystem behaves identically to Generate S-
Function. (See “Automate S-Function Generation with S-Function Builder” on page
24-22.)

Code Reuse and Model Blocks with Root Inport or Outport Blocks

Reusable functions with inputs or outputs connected to a referenced model's root

Inport or Outport block can affect code reuse. This means that code for certain atomic
subsystems cannot be reused in a model reference context the same way it is reused in a
standalone model.



Reusable Code and Referenced Models

For example, suppose you create the following subsystem and make the following
changes to the subsystem's block parameters:

+ Select Treat as an atomic unit

* Go to the Code Generation tab and set Function packaging to Reusable
function

O——>—— O
Inl Ot

Suppose you then create the following model, which includes three instances of the
preceding subsystem.

Y

(1 3—w{in1  Outs In1  Outt il outt——p( 1 )

In1 St

¥

Subsystem 1 Subsystem 2 Subsystem 3

With the configuration parameter Default parameter behavior set to Inlined in this
stand-alone model, the code generator can optimize the code by generating a single copy
of the function for the reused subsystem, as shown below.

void reuse_subsysl Subsysteml(
real_T rtu_O,
rtB_reuse_subsysl Subsysteml *localB)

/* Gain: "<S1>/Gain" */
localB->Gain_k = rtu_0 * 3.0;
T

When generated as code for a Model block (into an slprj folder in the code generation
folder), the subsystems have three different function signatures:

/* Output and update for atomic system: "<Root>/Subsysteml® */
void reuse_subsysl_Subsysteml(const real T *rtu_O,
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rtB_reuse_subsysl Subsysteml
*localB)
{
/* Gain: "<S1>/Gain® */
localB->Gain_w = (*rtu_0) * 3.0;
}

/* Output and update for atomic system: "<Root>/Subsystem2® */
void reuse_subsysl_Subsystem2(real_T rtu_Inl,
rtB_reuse_subsysl Subsystem2

*localB)
{

/* Gain: "<S2>/Gain® */

localB->Gain_y = rtu_Inl * 3.0;

}

/* Output and update for atomic system: "<Root>/Subsystem3® */
void reuse_subsysl Subsystem3(real T rtu_Inl, real_T *rty 0)

{
/* Gain: "<S3>/Gain" */

Crty_0) = rtu_Inl * 3.0;

One way to make all the function signatures the same for code reuse, is to insert Signal
Conversion blocks. Place one between the Inport and Subsystem1 and another between
Subsystem3 and the Outport of the referenced model.

Ini  Outl plint  Outt plint  Cutt
I Out1
Signal Signal
Comersipn —ubsystem Subsystem 2 Subsystem 2 conemiont

The result is a single reusable function:

void reuse_subsys2_Subsysteml(real_T rtu_Inl,
rtB_reuse_subsys2_Subsysteml *localB)

{

/* Gain: "<S1>/Gain® */
localB->Gain_g = rtu_Inl * 3.0;

}



Reusable Code and Referenced Models

You can achieve the same result (reusable code) with only one Signal Conversion block.
You can omit the Signal Conversion block connected to the Inport block if you select the
Pass fixed-size scalar root inputs by value check box at the bottom of the Model
Referencing pane of the Configuration Parameters dialog box. When you do this, you
still need to insert a Signal Conversion block before the Outport block.
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Simulink Coder Model Referencing Limitations
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The following Simulink Coder limitations apply to model referencing. In addition to these
limitations, a model reference hierarchy used for code generation must satisfy:

*  The Simulink requirements listed in:

+ “Configuration Requirements for All Referenced Model Simulation”
+ “Model Structure Requirements”
*  The Simulink limitations listed in “Model Referencing Limitations”.

*  The Simulink Coder requirements applicable to the code generation target, as listed
in “Configuration Parameter Requirements” on page 8-18.

Customization Limitations

* The code generator ignores custom code settings in the Configuration Parameters
dialog box and custom code blocks when generating code for a referenced model.

+ Data type replacement is not supported for simulation target code generation of
referenced models.

+ Simulation targets do not include Stateflow target custom code.

+ If you have an Embedded Coder license, some restrictions exist on grouped custom
storage classes in referenced models. For details, see “Custom Storage Class
Limitations”.

Data Logging Limitations

*  To Workspace blocks, Scope blocks, and all types of runtime display, such as the
display of port values and signal values, are ignored when the Simulink Coder
software generates code for a referenced model. The resulting code is the same as if
the constructs did not exist.

+  Code generated for referenced models cannot log data to MAT-files. If data logging
is enabled for a referenced model, the Simulink Coder software disables the option
before code generation and re-enables it afterwards.

+ If you log states for a model that contains referenced models, the ordering of the
states in the output is determined by block sorted order, and might not match
between simulation output and generated code MAT-file logging output.



Simulink Coder Model Referencing Limitations

State Initialization Limitation

When a top model uses the Data Import/Export > Initial state parameter in the
Configuration Parameters dialog box to specify initial conditions, the Simulink Coder
software does not initialize the discrete states of the referenced models during code
generation.

Reusability Limitations

If a referenced model used for code generation has any of the following properties, the
model must specify the configuration parameter Model Referencing > Total number
of instances allowed per top model as One, and no other instances of the model can
exist in the hierarchy. If you do not set the parameter to One, or more than one instance
of the model exists in the hierarchy, an error occurs. The properties are:

+  The model references another model which has been set to single instance

* The model contains a state or signal with non-auto storage class

* The model uses any of the following Stateflow constructs:

*  Machine-parented data
*  Machine-parented events
+ Stateflow graphical functions
*  The model contains a subsystem that is marked as function

* The model contains an S-function that is:

* Inlined but has not set the option SS_OPTION_WORKS_ WITH_CODE_REUSE
Not inlined

*  The model contains a function-call subsystem that:

* Has been forced by the Simulink engine to be a function

* Is called by a wide signal

For more information about Total number of instances allowed per top model, see
“Total number of instances allowed per top model”.
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S-Function Limitations

+ If a referenced model contains an S-function that should be inlined using a Target
Language Compiler file, the S-function must use the ssSetOptions macro to set
the SS_OPTION_USE_TLC WITH_ACCELERATOR option in its mdl InitializeSizes
method. The simulation target will not inline the S-function unless this flag is set.

* A referenced model cannot use noninlined S-functions generated by the Simulink
Coder software.

+  The Simulink Coder S-function target does not support model referencing.

For additional information, in the Simulink documentation, see “S-Functions with
Referenced Models”.

Simulink Tool Limitations

+ Simulink tools that require access to a model's internal data or configuration
(including the Model Coverage tool, the Simulink Report Generator product, the
Simulink debugger, and the Simulink profiler) have no effect on code generated by
the Simulink Coder software for a referenced model, or on the execution of that code.
Specifications made and actions taken by such tools are ignored and effectively do not
exist.

Subsystem Limitations
+ If a subsystem contains Model blocks, you cannot build a subsystem module by

right-clicking the subsystem (or by using Code > C/C++ Code > Build Selected
Subsystem) unless the model is configured to use an ERT target.

+ If you generate code for an atomic subsystem as a reusable function, inputs or outputs
that connect the subsystem to a referenced model might prevent code reuse, as
described in “Reusable Code and Referenced Models” on page 8-28.

Target Limitations

* The Simulink Coder S-function target does not support model referencing.
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Other Limitations

+ Errors or unexpected behavior can occur if a Model block is part of a cycle, the Model
block is a direct feedthrough block, and an algebraic loop results. For details, see
“Model Blocks and Direct Feed through”.

* The External mode option is not supported. If it is enabled, it is ignored during code
generation.

*  When a model contains a trigger or enable port, you cannot generate standalone
Simulink Coder code or PIL code.
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Combined Models

9-2

If you want to combine several models (or several instances of the same model) into a
single executable, the code generator offers several options.

The most powerful solution is to use Model blocks. Each instance of a Model block
represents another model, called a referenced model. For code generation, the referenced
model effectively replaces the Model block that references it. For details, see “Overview of
Model Referencing” and “Generate Code for Referenced Models” on page 8-4.

When developing embedded systems using the Embedded Coder product, you can
interface the code for several models to a common harness program by directly calling
the entry points to each model. However, the ert.tlc system target file has certain
restrictions, relating to embedded processing, that might not be compatible with your
application.

The grt.tlc system target file with the model parameter Code interface packaging
set to Reusable function is a another possible solution. Use it in situations where you
want to:

* Deploy more than one instance of a model

+ Selectively control calls to more than one instance of a model

*  Use dynamic memory allocation

* Include models that employ continuous states

* Log data to multiple files

*  Run one of the models in external mode

For more information, see “Use GRT with Reusable Function Packaging to Combine
Models” on page 9-4.

To summarize by target, your options are as follows:

System Target File Support for Combining Multiple Models?

grt.tlc (generic real-time) Yes (using Model blocks or Code
interface packaging set to Reusable
function)

ert.tlc (embedded real-time) Yes

rtwsfcn. tlc (S-function) No




Combined Models

Control Ownership of Data

If you have an Embedded Coder license, you can specify an owner for individual data
items such as signals, parameters, and states. The owner of a data item generates the
definition (memory allocation and initialization) for the data item. For example, if you
apply a custom storage class to a Simul ink._.Parameter object so that it appears as a
tunable global variable in the generated code, specify one of the combined models as the
owner of the object. The code generated for that model defines the parameter data.

If you use model referencing, you can modularize the generated code and establish clear
ownership of data when you work in a team.

If you do not use model referencing, you can prevent generation of duplicate definitions
for a data item. For example, suppose you store a Simul ink.Parameter object in the
base workspace and apply the storage class ExportedGlobal. If you generate code
from two separate models that use the object, each model generates a definition for the
corresponding global variable. Instead, you can specify an owner for the object so that
only the owner generates a definition.

To specify an owner for a data item:

1 Apply a custom storage class to the data item. See “Introduction to Custom Storage
Classes”.

2 Configure the owner of the data item by specifying the Owner custom attribute.

3 Select the model configuration parameter Use owner from data object for data

definition placement.

For more information about controlling ownership and file placement of data definitions
and declarations, see “Manage Placement of Data Definitions and Declarations”.
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Use GRT with Reusable Function Packaging to Combine Models

Use the GRT system target file with the model configuration parameter Code interface
packaging set to Reusable function to combine models into a single program. (See
“Combined Models” on page 9-2 for other ways to combine models into a single program.)

Building a multiple-model executable is fairly straightforward:

1 Generate and compile code from each of the models that are to be combined. If you
want to include multiple instances of the same model, or if you want model data to
be dynamically allocated, set the model parameter Code interface packaging to
Reusable function.

2 Combine the makefiles for each of the models into one makefile for creating the final
multiple model executable.

3 Create a combined simulation engine by modifying a main program, such as
rt_malloc_main.c, to initialize and call the models.

4 Run the combination makefile to link the object files from the models and the main
program into an executable.

Share Data Across Models

Use unidirectional signal connections between models. This affects the order in which
models are called. For example, if an output signal from modelA is used as input to
modelB, modelA”s output computation should be called first.

Timing Issues

You must generate all of the models you are combining with the same solver mode (either
all single-tasking or all multitasking.) In addition, if the models employ continuous
states, the same solver should be used for all of the models.

Because each model has its own model-specific definition of the rtModel data structure,
you must use an alternative mechanism to control model execution, as follows:

* The file rtw/c/src/rtmcmacros.h provides an rtModel API clue that can be used
to call the rt_OneStep procedure.

+ The rtmcmacros.h header file defines the rtMode lCommon data structure, which
has the minimum common elements in the rtModel structure required to step a
model forward one time step.
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+ The rtmcsetCommon macro populates an object of type rtMode ICommon by copying
the respective similar elements in the model's rtModel object. Your main routine
must create one rtMode lCommon structure for each model being called by the main
routine.

* The main routine will subsequently invoke rt_OneStep with a pointer to the
rtMode lCommon structure instead of a pointer to the rtModel structure.

If the base rates for the models are not the same, the main program (such as
rt_malloc_main.c) must set up the timer interrupt to occur at the greatest common
divisor rate of the models. The main program calls each model at a time interval.

Data Logging and External Mode Support
A multiple-model program can log data to separate MAT-files for each model.

Only one of the models in a multiple-model program can use external mode.
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Platform Options for Development and Deployment

10-2

When you use Simulink software to create and execute a model, and the code generator
to produce C or C++ code, you can consider up to three platforms:

*+ MATLAB Host — The host computer platform that runs MathWorks software during
application development.

*  Production Target — The target hardware platform on which you deploy an
application when it is put into production.

* Test Target — The platform on which you test an application under development
before deployment.

The same platform can serve in two, or possibly three, capacities, but the platforms
remain conceptually distinct. Often the MATLAB host and the test target are the same.
The production target is usually different from, and less powerful than, the MATLAB
host or the test target. Often, the production target can do little more than run a
downloaded executable file.

When you use Simulink software to execute a model for which you later generate code,
or use the code generator to produce code for deployment on a production target, you
must provide information about the production hardware board and the compiler that
you use with it. The Simulink software uses this information to get bit-true agreement
for the results of integer and fixed-point operations performed in simulation and in code
generated for the production target. The code generator uses the information to create
code that executes with maximum efficiency.

When you generate code for testing on a test target, you must provide information about
the test hardware board and the compiler that you use with it. The code generator uses
this information to create code that provides bit-true agreement for the results of integer
and fixed-point operations performed in simulation, in code generated for the production
target, and in code generated for the test target. Agreement can result even though the
production target and test target can use very different hardware, and the compilers

for the two targets can use different defaults, that is, where the C standard does not
completely define behavior.



Configure Target Hardware

Configure Target Hardware

You can configure model simulation or code generation for a specific hardware board
and its device type. For example, you can set the data size, byte ordering, and compiler
behavior, such as integer rounding. You can configure two types of target hardware:

* Production hardware — Production target hardware and the compiler that you use
with it. This information affects simulation and code generation.

* Test hardware — Test target hardware and the compiler that you use with it. This
information affects only code generation.

Configure production hardware with the Configuration Parameters dialog Hardware
Implementation pane or from the Configuration Parameters All Parameters tab. By
default, the Hardware Implementation pane lists Hardware board, Device vendor,
and Device type parameter fields only. Unless you have installed hardware support
packages, Hardware board lists values None or Determine by Code Generation
system target file, and Get Hardware Support Packages. After installing a
hardware support package, the list also includes the corresponding hardware board
name. If you select a hardware board name, parameters for that board appear. To set
device details, such as data size and byte ordering, click Device details.

Configure test target hardware from the Configuration Parameters All Parameters
tab. Set ProdEqTarget to off, which enables parameters for configuring test target
hardware details. Code generated for test target hardware executes in the environment
specified by the test target hardware parameters, but behaves as if it were executing
in the environment specified for the production target hardware. See “Configure Test
Hardware Characteristics” on page 10-14 for details.

If you have used the Code Generation pane to specify a System target file, and the
target file specifies a default microprocessor and its hardware properties, the default and
properties appear as initial values in the Hardware Implementation pane.

You cannot change parameters that have only one possible value. Parameters that
have more than one possible value provide a list of valid values. If you specify hardware
properties manually, check carefully that their values are consistent with the system
target file. Otherwise, the generated code might fail to compile or execute, or might
execute but give incorrect results.

Note: Hardware implementation parameters do not control hardware or compiler
behavior. They describe hardware and compiler properties to MATLAB software. The
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code generator uses the information to produce code for the platform that runs as
efficiently as possible, and gives bit-true agreement for the results of integer and fixed-
point operations in simulation, production code, and test code.

The rest of this topic explains how to configure a hardware implementation. For
details about specific parameters, see “Hardware Implementation Pane”. To see an
example of Hardware Implementation pane capabilities, see the example model

rtwdemo_targetsettings.

Identify the Hardware Board

Identify the hardware board that will run the code generated from your model by
selecting a value for Configuration Parameters > Hardware Implementation >

Hardware board.

If

Then Select

The menu includes the name of the
hardware board that you want to use

The name of that hardware board. If you select
a hardware board name, parameters for that
board appear.

The name of the name of the hardware
board that you want to use is missing
from the menu

Get Hardware Support Packages. That
value invokes the Support Package Installer.
Install the target support package of interest.
After you install the support package, the menu
includes relevant hardware board names.

The system target file specified for the
model is ert.tlc, realtime.tlc, or
autosar.tlc.

None. No hardware board is specified for the
hardware implementation.

The system target file specified for the
model is a value other than ert.tlc,
realtime.tlc, or autosar.tlc.

Determine by Code Generation system
target file. The code generator uses the
specified system target file to determine the
hardware implementation.

The Hardware Implementation pane identifies the system target file selected on

the Code Generation pane.

To configure test target hardware, use the Configuration Parameters All Parameters
tab. Set ProdEqTarget to off, which enables parameters for configuring test hardware

details.
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Identify the Device Vendor

Use the Device vendor parameter to identify the vendor of the microprocessor of the
target hardware device. Your selection determines the available microprocessors in
the Device type menu. If the desired vendor name does not appear, select Custom
Processor. Then, use the Device type parameter to specify the microprocessor.

+  For complete lists of Device vendor and Device type values, see “Device vendor”
and “Device type” in the Simulink reference documentation.

* To add Device vendor and Device type values to the default set that is displayed
on the Hardware Implementation pane, see “Register Additional Device Vendor
and Device Type Values” on page 10-5.

Identify the Device Type

Use the Device type parameter to identify the microprocessor name among the
supported devices listed for your Device vendor selection. If the desired microprocessor
does not appear in the menu, change Device vendor to Custom Processor.

If no available device type matches, select Custom Processor. Then specify device
details for your custom device.

If you select a device type for which the target file specifies default hardware properties,
the properties appear as initial values. You cannot change the value of parameters with
only one possible selection. Parameters that have more than one possible value provide a
menu. Select values for your hardware.

Register Additional Device Vendor and Device Type Values

To add Device vendor and Device type values to the default set that is displayed on
the Hardware Implementation pane, you can use a hardware device registration API
provided by the code generator.

To use this API, you create an sl_customization.m file, located in your MATLAB
path, that invokes the registerTargetlnfo function and fills in a hardware
device registry entry with device information. The device information is registered
with Simulink software for each subsequent Simulink session. (To register your
device information without restarting MATLAB, issue the MATLAB command
sl_refresh_customizations.)
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For example, the following sl_customization.m file adds device vendor MyDevVendor
and device type MyDevType to the Simulink device lists.

function sl_customization(cm)
cm.registerTargetinfo(@loc_register_device);
end

function thisDev = loc_register_device
thisDev = RTW.HWDeviceRegistry;
thisDev.Vendor = "MyDevVendor"®;
thisDev.Type = "MyDevType®;
thisDev.Alias = {};
thisDev.Platform = {"Prod", "Target"};
thisDev.setWordSizes([8 16 32 32 32]);
thisDev.LargestAtomiclnteger = "Char”;
thisDev.LargestAtomicFloat = "None*;
thisDev.Endianess = "Unspecified”;
thisDev. IntDivRoundTo = "Undefined”;
thisDev.ShiftRightIntArith = true;
thisDev.setEnabled({" IntDivRoundTo"});

end

Once registered, you can select the device in the Hardware Implementation pane.

To register multiple devices, specify an array of RTW.HWDeviceRegistry objects in your
sl_customization.m file. For example,

function sl_customization(cm)
cm._registerTargetinfo(@loc_register_device);
end

function thisDev = loc_register_device
thisDev(1l) = RTW.HWDeviceRegistry;

thisDev(1).Vendor = "MyDevVendor"®;
thisDev(1l).Type = "MyDevTypel®;

thisDev(4) = RTW.HWDeviceRegistry;
thisDev(4) .Vendor = "MyDevVendor"®;
thisDev(4) .Type = "MyDevType4d*;

end



Configure Target Hardware

The following table lists the RTW.HWDeviceRegistry properties that you can specify in
the registerTargetInfo function call in your sl_customization.m file.

Property Description

Vendor Character vector specifying the Device vendor value for
your hardware device.

Type Character vector specifying the Device type value for your
hardware device.

Alias Cell array of character vectors specifying aliases or legacy
names that users might specify that should resolve to

this device. Specify each alias or legacy name in the

format "Vendor->Type®. (Embedded Coder software
provides the utility functions RTW. isHWDeviceTypeEq and
RTW.resolveHWDeviceType for detecting and resolving
alias values or legacy values when testing user-specified
values for the target device type.)

Platform Cell array of enumerated character vector values specifying
whether this device should be listed in the Production
hardware subpane ({"Prod"}), the Test hardware
subpane ({"Target"}), or both ({"Prod®, "Target"}).

setWordSizes Array of integer sizes to associate with the Number of bits
parameters char, short, int, long, and native word size,
respectively.

LargestAtomiclnteger|Character vector specifying an enumerated value for

the Largest atomic size: integer parameter: "Char",
*Short","Int", or "Long".

LargestAtomicFloat |Character vector specifying an enumerated value for the
Largest atomic size: floating-point parameter: "Float”,
"Double”, or "None".

Endianess Character vector specifying an enumerated value for the
Byte ordering parameter: "Unspecified”, "Little” for
little Endian, or "Big" for big Endian.

IntDivRoundTo Character vector specifying an enumerated value for the
Signed integer division rounds to parameter: "Zero",
"Floor", or "Undefined".
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Property Description

ShiftRightIntArith |Boolean value specifying whether your compiler implements

a signed integer right shift as an arithmetic right shift (true)
or not (False).

setEnabled Cell array of character vectors specifying which device
properties should be enabled (modifiable) in the Hardware
Implementation pane when this device type is selected.
In addition to the "Endianess”, " IntDivRoundTo", and
"ShiftRightIntArith" properties listed above, you

can enable individual Number of bits parameters using
the property names "BitPerChar”, "BitPerShort”,
"BitPerlInt”, "BitPerLong", and "NativeWordSize~.

Set Bit Lengths for Device Data Types

The Number of bits parameters describe the native word size of the microprocessor,
and the bit lengths of char, short, int, and long data. For code generation to succeed:
* The bit lengths must be such that char <= short <= int <= long.

+ Bit lengths must be multiples of 8, with a maximum of 32.

* The bit length for long data must not be less than 32.

Integer type names are defined in the file rtwtypes.h. The values that you provide
must be consistent with the word sizes as defined in the compiler's Fimits.h header

file. The following table lists code generator integer type names and maps them to the
corresponding Simulink names.

Code Generator Integer Type Simulink Integer Type
boolean T boolean

int8 T int8

uint8_ T uint8

intle T intl6

uintle T uintlé

int32_T int32

uint32_ T uint32
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If no ANSI® C type with a matching word size is available, but a larger ANSI C type
is available, the code generator uses the larger type for int8 T, uint8_T, intl6_T,
uintl6é T, int32_T, and uint32_T. When the code generator uses a larger type, the
resulting logged values (for example, using MAT-file logging) can have different data
types than logged values used for simulation.

An application can use integer data of length from 1 (unsigned) or 2 (signed) bits

up 32 bits. If the integer length matches the length of an available type, the code
generator uses that type. If a matching type is not available, the code generator uses
the smallest available type that can hold the data, generating code that does not use
unnecessary higher-order bits. For example, on a target that provided 8-bit, 16-bit, and
32-bit integers, a signal specified as 24 bits would be implemented as an int32_T or
uint32_T.

Note: During code generation, the software checks the compatibility of model data types
with the data types that you specify for production hardware:

+ If none of the lengths specified for production hardware integers is 32 bits, the
software generates an error like the following:

Error in embedded hardware settings on Hardware Implementation pane of Configuration
Parameters dialog box: at least one of "char™, "short", "int" or "long" must have a
value of 32

+ If the lengths of data types used by the model are smaller than the available
production hardware integer lengths, the software generates a warning like the

following:

Warning: The data type "intl6" uses a word size that is not available on the intended
target. Fixed-point signals using this data type will be put inside a larger word or
multi words. When used, extra software will be generated to force this larger word or
multi words to emulate a smaller word. This emulation is helpful when your prototype
target and your final production target are not the same. If the smaller word size does
NOT exist on the final production target, then consider increasing the word size to one
that is supported.

Code that uses emulated integer data is not maximally efficient, but can be useful
during application development for emulating integer lengths that are available only on
production hardware. The use of emulation does not affect the results of execution.
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Set Byte Ordering Used By Device

The Byte ordering parameter specifies whether the target hardware uses Big Endian
(most significant byte first) or Little Endian (least significant byte first) byte
ordering. If left as Unspecified, the code generator produces code that determines the
endianness of the target; this is the least efficient setting.

Set Quotient Rounding Behavior for Signed Integer Division

ANSI C does not completely define the quotient rounding technique to be used when
dividing one signed integer by another, so the behavior is implementation-dependent. If
both integers are positive, or both are negative, the quotient must round down. If either
integer is positive and the other is negative, the quotient can round up or down.

The Signed integer division rounds to parameter tells the code generator how the
compiler rounds the result of signed integer division. Providing this information does
not change the operation of the compiler. It only describes that behavior to the code
generator, which uses the information to optimize code generated for signed integer
division. The parameter values are:

+ Zero — If the quotient is between two integers, the compiler chooses the integer that
is closer to zero as the result.

* Floor — If the quotient is between two integers, the compiler chooses the integer
that is closer to negative infinity.

+ Undefined — Choose this value if neither Zero nor Floor describes the compiler's
behavior, or if that behavior is unknown.

The following table illustrates the compiler behavior that corresponds to each of these
three values:

N D Ideal N/D  Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8or9

Note: Select Undefined only as a last resort. When the code generator does not know
the signed integer division rounding behavior of the compiler, it generates extra code.
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The compiler's implementation for signed integer division rounding can be obtained from
the compiler documentation, or by experiment if documentation is not available.

Set Arithmetic Right Shift Behavior for Signed Integers

ANSI C does not define the behavior of right shifts on negative integers, so the
behavior is implementation-dependent. The Shift right on a signed integer as
arithmetic shift option tells the code generator how the compiler implements right
shifts on negative integers. Providing this information does not change the operation
of the compiler. It only describes that behavior to the code generator, which uses the
information to optimize the code generated for arithmetic right shifts.

Select the option if the C compiler implements a signed integer right shift as an
arithmetic right shift, and clear the option otherwise. An arithmetic right shift fills bits
vacated by the right shift with the value of the most significant bit, which indicates the
sign of the number in two’s-complement notation. The option is selected by default. If
your compiler handles right shifts as arithmetic shifts, this is the preferred setting.

*  When you select the option , the code generator produces efficient code whenever the
Simulink model performs arithmetic shifts on signed integers.
* When the option is cleared, the code generator produces fully portable but less

efficient code to implement right arithmetic shifts.

The compiler's implementation for arithmetic right shifts can be obtained from the
compiler documentation, or by experiment if documentation is not available.

Update Release 14 Hardware Configuration

If your model was created before Release 14 and has not been updated, the
Configuration Parameters > All Parameters > Configure current execution
hardware device parameter (TargetUnknown) value is "on" by default.

To update your model, uncheck the box for Configuration Parameters > All
Parameters > Configure current execution hardware device or type the following
at the MATLAB command line:

cs = getActiveConfigSet("your_model_name®);
set_param(cs, "TargetUnknown®, "off");

After setting the parameter value to “off“, this update to your model:
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* Enables operation of the Test Hardware is the same as production hardware
parameter (ProdEqTarget) and sets this parameter value to "on*

* Copies the Production device vendor and type parameter (ProdHWDeviceType)
value to the Test device vendor and type parameter (TargetHWDeviceType)

Uncheck the box for Configuration Parameters > All Parameters > Test Hardware
is the same as production hardware (only if your production and test hardware are
different), set the parameters in Configuration Parameters > All Parameters >
Hardware implementation to match your production and test systems, and save the
model to complete the update.



Configure Production Hardware Characteristics

Configure Production Hardware Characteristics

“Configure Target Hardware” on page 10-3 explains how to configure target hardware
for a model. This topic describes considerations that apply only to production target
hardware. When you configure production hardware, keep the following in mind:

Code generation targets can have word sizes and other hardware characteristics that
differ from the MATLAB host. Furthermore, code can be prototyped on hardware
that is different from the deployment target or the MATLAB host. The code generator
takes these differences into account when producing code.

The Simulink product uses some of the information in the production target hardware
configuration. That information enables simulations without code generation to give
the same results as executing generated code. For example, the results can detect
error conditions that could arise on the target hardware, such as hardware overflow.

The code generator produces code that has bit-true agreement with Simulink results
for integer and fixed-point operations. Generated code that emulates unavailable data
lengths runs less efficiently than it would without emulation, but the emulation does
not affect bit-true agreement with Simulink for integer and fixed-point results.

If you change targets during application development, reconfigure the hardware
implementation parameters for the new target before generating or regenerating
code. Bit-true agreement might not be achieved for results of integer and fixed-
point operations in simulation, production code, and test code when code executes on
hardware for which it was not generated.

Use the Integer rounding mode parameter on model blocks to simulate the
rounding behavior of the C compiler that you intend to use to compile code generated
from the model. This setting appears on the Signal Attributes pane of the parameter
dialog boxes of blocks that can perform signed integer arithmetic, such as the
Product and n-D Lookup Table blocks.

For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Precision”.

When models contain Model blocks, configure models that they reference to use
identical hardware settings.
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“Configure Target Hardware” on page 10-3 explains how to configure target hardware
for a model. This topic describes considerations that apply only to production target
hardware.

By default, the test target hardware configuration is the same as the configuration for
the production target hardware. Code generated under this configuration is suitable for
production use, or for testing in an environment identical to the production environment.

To generate code that runs on a test target hardware for test purposes, but behaves as
if it were running on production target hardware in a production application, adjust the
settings of parameters for test target hardware.

To configure test target hardware:

Open the Configuration Parameters All Parameters tab.

2 Enable parameters for configuring test target hardware by setting ProdEqTarget to
off.

3 Use the test hardware (Target*) parameters to adjust the device type details.

If you have specified a system target file, and the target file specifies a default
microprocessor and its hardware properties, the default and properties appear as initial
values.

Parameters with only one possible value cannot be changed. If you modify hardware
properties, check carefully that their values are consistent with the system target file.
Otherwise, the generated code might fail to compile or execute, or might execute but give
incorrect results.
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Control the Location for Generated Files

By default, the files generated by Simulink diagram updates and model builds are placed
in a build folder, the root of which is the current working folder (pwd). If you are doing
model builds, which potentially generate files for simulation targets and code generation
targets, artifacts used for simulation and code generation files coexist in subfolders
within that build folder. However, in some situations, you might want the generated files
to go to a root folder outside the current working folder. For example,

* You need to keep generated files separate from the models and other source materials
used to generate them.

*  You want to reuse or share previously-built simulation targets without having to set
the current working folder back to a previous working folder.

You might also want to separate generated simulation artifacts from generated
production code.

To allow you to control the output locations for the files generated by diagram updates
and model builds, the software allows you to separately specify the following build
folders:

*  Simulation cache folder — root folder in which to place build artifacts used for
simulation

* Code generation folder — root folder in which to place code generation files

For specifying the folder locations, the software provides

*+ MATLAB session parameters CacheFolder and CodeGenFolder

* Simulink preferences Simulation cache folder and Code generation folder,
which, if specified, provide the initial defaults for the MATLAB session parameters

*  Function Simulink. fileGenControl for directly manipulating the MATLAB
session parameters, for example, overriding or restoring the initial default values for
the current session

For more information about setting up a simulation cache folder, see “Control Generated
Files Location Used for Simulation” on page 10-17.

For more information about setting up a code generation folder, see “Control the Location
for Code Generation Files” on page 10-19.
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For more information about directly manipulating the MATLAB session parameters
CacheFolder and CodeGenFolder, see “Override Build Folder Settings for Current
Session” on page 10-21.
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Control Generated Files Location Used for Simulation

By default, the files generated by Simulink diagram updates are placed in a build folder,
the root of which is the current working folder (pwd). However, in some situations, you
might want the generated files to go to a root folder outside the current working folder.
For example,

* You need to keep generated files separate from the models and other source materials
used to generate them.

* You want to reuse or share previously-built simulation targets without having to set
the current working folder back to a previous working folder.

The Simulink preference Simulation cache folder provides control over the output
location for files generated by Simulink diagram updates. The preference appears in the
General pane, under File generation control. To specify the root folder location for
files generated by Simulink diagram updates, set the preference value by entering or
browsing to a folder path.

The folder path that you specify provides the initial default for the MATLAB session
parameter CacheFolder. When you initiate a Simulink diagram update, files generated
are placed in a build folder at the root location specified by CacheFolder (if any), rather
than in the current working folder (pwd).

For example, using a 32-bit Windows host platform, if you set the Simulation cache
folder to "C:\Work\mymodelsimcache" and then simulate the example model
rtwdemo_capli, files are generated into the specified folder.

As an alternative to using the Simulink preferences GUI to set Simulation cache
folder, you also can get and set the preference value from the command line using
get_param and set_param. For example,

>> get_param(0, "CacheFolder™)
ans =

>> set_param(0, "CacheFolder®, fullfile("C:","Work", "mymodelsimcache"))
>> get_param(0, "CacheFolder™)

ans =

C:\Work\mymodelsimcache
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Also, you can choose to override the Simulation cache folder preference value for the
current MATLAB session.
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Control the Location for Code Generation Files

By default, the files generated by Simulink model builds are placed in a build folder, the
root of which is the current working folder (pwd). Model builds potentially generate files
for simulation targets as well as code generation targets, and the resulting build folder
contains both artifacts used for simulation and code generation files. However, in some
situations, you might want the generated files to go to one or more root folders outside
the current working folder. For example,

* You need to keep generated files separate from the models and other source materials
used to generate them.

* You want to separate generated production code from generated simulation artifacts.

The Simulink preference Code generation folder provides control over the output
location for files generated by model builds for code generation targets. The preference
appears in the General pane, under File generation control. To specify the root folder
location for code generation files generated by model builds, set the preference value by
entering or browsing to a folder path.

The folder path that you specify provides the initial default for the MATLAB session
parameter CodeGenFolder. When you initiate a Simulink model build, code
generation files generated are placed in a build folder at the root location specified by
CodeGenFolder (if any), rather than in the current working folder (pwd).

For example, using a 32-bit Windows host platform, if you set the Code generation
folder to "C:\test\mymodelgencode” and then build the example model
rtwdemo_capli, files are generated into the specified folder.

As an alternative to using the Simulink preferences GUI to set Code generation
folder, you also can get and set the preference value from the command line using
get param and set_param. For example,

>> get_param(0, "CodeGenFolder")
ans =

>> set_param(0, "CodeGenFolder®, fullfile("C:","test", "mymodelgencode®))
>> get_param(0, "CodeGenFolder")

ans =

C:\test\mymodelgencode
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Also, you can choose to override the Code generation folder preference value for the
current MATLAB session. For more information, see “Override Build Folder Settings for
Current Session” on page 10-21.
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Override Build Folder Settings for Current Session

The Simulink preferences Simulation cache folder and Code generation folder
provide the initial defaults for the MATLAB session parameters CacheFolder and
CodeGenFolder, which determine where files generated by Simulink diagram updates
and model builds are placed. However, you can override these build folder settings
during the current MATLAB session, using the Simulink.fileGenControl function.
This function allows you to directly manipulate the MATLAB session parameters, for
example, overriding or restoring the initial default values. The values you set using
Simulink. FfileGenControl expire at the end of the current MATLAB session. For
more information and detailed examples, see the Simul ink.fileGenControl function
reference page.
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Protect a Referenced Model

11-2

Protect a model when you want to share a model with a third party without revealing
intellectual property. Protecting a model does not use encryption technology unless

you use the optional password protection available for read-only view, simulation, and
code generation. If you choose password protection for one of these options, the software
protects the supporting files using AES—256 encryption.

When you create a protected model:

By default, Simulink creates and stores a protected version of the referenced model
in the current working folder. The protected model has the same name as the source
model, with a .sIxp extension.

The original Model block does not change. However, if the Model block parameter
Model name does not specify an extension, a protected model, .sIxp, takes
precedence over a model file, .sIx.

You can optionally create a harness model which includes the protected model. A
shield icon appears in the lower-left corner of the protected model block in the harness
model. For more information, see “Harness Model” on page 11-4.

You can optionally include generated code with the protected model so that a third
party can generate code for a model that contains the protected model. For more
information, see “Code Generation Support in a Protected Model” on page 11-6.

If the Model block uses variants, only the active variant is protected. For more
information, see “Set up Model Variants”.

If the model defines callbacks, the model protection process does not preserve these
callbacks. For more information on creating callbacks for use with a protected model,
see “Define Callbacks for Protected Model” on page 11-26.

If you rename a protected model, or change its suffix, the model is unusable until
you restore its original name and suffix. You cannot change a protected model file
internally because such changes make the file unusable.

Create a protected model using one of the following options.

The Model block context menu. For more information, see “Create a Protected Model”
on page 11-10

The Simulink.ModelReference.protect function.

The Simulink Editor menu bar. Select File > Export Model To > Protected Model
to create a protected model from the current model.



Protect a Referenced Model

Requirements for Protecting a Model

When you create a protected model from a referenced model, the referenced model
must meet all requirements listed in “Model Referencing Limitations”, as well as these
requirements:

* You must have a Simulink Coder license to create a protected model.

* A model that you protect must be available on the MATLAB path and not have
unsaved changes.

* A model that you protect cannot reference a protected model directly or indirectly.
* A model that you protect cannot use a non-inlined S-function directly or indirectly.

To use a protected model that requires passwords across platforms, before you create
the protected model, set the MATLAB character set encoding to "US-ASCI1". For
more information, see slCharacterEncoding.

Model protection has certain limitations, as listed in “Limitations on All Model
Referencing” and “Limitations on Accelerator Mode Referenced Models”.
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Harness Model

You can create a harness model for the generated protected model. The harness model
opens as a new, untitled model that contains only a Model block that references the
protected model. This Model block:

+  Specifies the Model block parameter, Model name, as the name of the protected
model.

* Has a shield icon in the lower-left corner.

*  Has the same number of input and output ports as the protected model.

* Defines model reference arguments that the protected model uses, but does not
provide values.

To create a harness model, see “Create a Protected Model” on page 11-10. You can
use a harness model to test your protected model. For more information, see “Test the
Protected Model” on page 11-20. You can also copy the Model block in your harness
model to another model, where it is an interface to the protected model.
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Protected Model Report

You can generate a protected model report when you create the protected model. The
report is included as part of the protected model. The report has:

* A Summary, including the following tables:

Environment, providing the Simulink version and platform used to create the
protected model.

* Supported functionality, reporting On, OFF, or On with password
protection for each possible functionality that the protected model supports.

+ Licenses, listing licenses required to run the protected model.

*  An Interface Report, including model interface information such as input and
output specifications, exported function information, interface parameters, and data
stores.

When you create the protected model from the Simulink Editor, the
protected model report is generated. To generate a report when using the
Simulink_ModelReference.protect function, set the ‘Report’ option to true.

If you configure your protected model for multiple targets, the Summary includes a
list of supported targets in the Supported functionality table. When you build a
model that references a protected model with multiple targets, the protected model code
generation report represents the currently configured target.

To view the protected model report, right-click the protected-model badge icon and select
Display Report. Or, call the Simulink.ProtectedModel .open function with the
report option.
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Code Generation Support in a Protected Model

11-6

You can create a protected model that supports code generation. When a protected
model includes generated code, a third party can generate code for a model that includes
the protected model. If you choose to obfuscate the code, the code is obfuscated before
compilation. The protected model file contains only obfuscated headers and binaries.
Source code, such as .c and .cpp, is not present in the protected model file, although
the headers are documented in the protected model report. For more information, see
“Protected Model File” on page 11-8 and “Protected Model Report” on page 11-5.

In the Create Protected Model dialog box, select the Use generated code check box.
The appearance of the generated code is determined by the Content type list. To enable
obfuscated code, select Obfuscated source code from the list. For an example on
including code generation support, see “Create a Protected Model” on page 11-10.

Protected Model Requirements to Support Code Generation

Contents and configuration of a model might prevent code generation support of the
protected model. Interaction between the parent model and the protected model might
also prevent code generation.

*  Code generation for the protected model is only supported for Normal, Accelerator,
Software-in-the-Loop (SIL), and Processor-in-the-Loop (PIL) modes and a single
target. Both GRT and ERT targets cannot be supported by the same protected model.

* Source code comments in the Code Generation > Comments pane are ignored.
Obfuscation of the generated code removes comments because comments might reveal
intellectual property.

*  Custom code specified in the Code Generation > Custom Code pane is obfuscated,
but identifiers are not.

+ Code generation of a model that includes a protected model causes an error, if:

+ Their interfaces do not match.
+ There are incompatible parameters.

+ A protected model and another model share the same name in the same model
reference hierarchy.

+ Selecting the Code Generation > Verification > Measure function execution
time check box is incompatible with model protection. If you have this option selected



Code Generation Support in a Protected Model

when you protect your model, the software turns the parameter off and displays a
warning.
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Protected Model File

A protected model file (.sIxp) consists of the model itself and supporting files, depending
on the options that you selected when you created the protected model.

If you created a protected model for simulation only and the referencing model is in
Normal mode, after simulation, the model .mexext file is placed in the build folder.

If you created a protected model for simulation only and the referencing model is in
Accelerator or Rapid Accelerator mode, after simulation, the following files are
unpacked:

slprj/sim/model/*_h

slprj/sim/model /modellib.a (or modellib.lib)

slprj/sim/model/tmwinternal/*

slprj/sim/_sharedutils/*

For the protected model report, these additional files are unpacked (but not in the build
folder):

slprj/sim/model/html/*

slprj/sim/model/buildinfo.mat

If you opted to include code generation support when you created the protected model,
after building your model the following files are unpacked (in addition to the preceding
files):

slprj/sim/model/*.h

slprj/sim/model /modellib.a (or modellib.lib)

slprj/sim/model /[ tmwinternal/*

slprj/sim/_sharedutils/*

slprj/target/model/*.h

slprj/target/model /model_rtwlib.a (or model_rtwlib.lib)

slprj/target/model /buildinfo.mat

slprj/target/model/codeinfo.mat

slprj/target/_sharedutils/*

slprj/target/model [tmwinternal/*

11-8



Protected Model File

With an Embedded Coder license, you can specify a Top model code interface. In this
case, if you opted to include code generation support when you created the protected
model, after building your model the following files are unpacked:

+ slprj/sim/model/*.h

* slprj/sim/model /modellib.a (or modellib.lib)

+ slprj/sim/model /tmwinternal/*

+ slprj/sim/_sharedutils/*

* model_target_rtw/*.h

* model target rtw/*_objExt

+ model_target_rtw/buildinfo.mat

* model target rtw/codeinfo.mat

+ slprj/target/_sharedutils/*

+ slprj/target/model/tmwinternal/*

For the protected model report, after building your model these files are unpacked (in
addition to the preceding files):

+ slprj/target/model /html/*

* slprj/target/model /buildinfo.mat

+ slprj/target/_sharedutils/html/*

Note: The slprj/sim/model/* files are deleted after they are used.
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Create a Protected Model

This example shows how to create a protected model for read-only viewing, simulation, or
code generation.

1  Open your model. For this example, sldemo_mdlref_basic is used as a
demonstration.

2 In the Simulink Editor, right-click the model block that references the model for
which you want to generate protected model code. In this example, right-click
CounterA.

3 From the context menu, select Block Parameters (ModelReference).

4 In the Block Parameters dialog box, in the Model name field, specify the extension
for the model, .sIx. When both the model and the protected model exist in the same
folder, . sIxp takes precedence over .sIx. In the Model name field, if you do not
specify an extension, then the original model block in the model becomes protected.

5 Click Apply and OK.

6 Right-click the model block. From the context menu, select Subsystem & Model
Reference > Create Protected Model for Selected Model Block.
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Create a Protected Model

Create Protected Model: sldermno_mdlref_counter @

Description

Create a protected modeli.slkp) that allows read-only view, simulation, and code
generation of the model with optional password protection.

Allow user of protected model 1o

| Open read-only view of madel

Simulate Enter password (op...  Enter password {op...
Lize generated code Enter password (op...  Enter password (op...
Content type: IDbﬁJscated source code *J

Create protected model in: Cliwork | Browse,.. |

| Create harness model for protected maodel

J Create H Cancel H Help I

In the Create Protected Model dialog box, select the Simulate and Use generated
code check boxes. If you want to password-protect the functionality of the protected
model, enter a password with a minimum of four characters. Each functionality can
have a unique password.

If you have an Embedded Coder license and specify an ERT based system target file
(for example, ert.tlc) for the model, the Code interface field is visible. From the
Code interface drop-down list, select one of the following options:

Model reference — Specifies code access through the model reference code
interface, which allows use of the protected model within a model reference
hierarchy. Users of the protected model can generate code from a parent model
that contains the protected model. In addition, users can run Model block SIL/PIL
simulations with the protected model.
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+ Top model — Specifies code access through the standalone interface. Users of
the protected model can run Model block SIL/PIL simulations with the protected
model.

9 From the Content type list, select Obfuscated source code to conceal the
source code purpose and logic of the protected model.

10 In the Create protected model in field, specify the folder path for the protected
model. The default value is the current working folder.

11 To create a harness model for the protected model, select the Create harness
model for protected model check box.

12 Click Create. An untitled harness model opens. It contains a model block, which
refers to the protected model sldemo_mdIref _counter.slxp. The Simulation
mode for the Model block is set to Accelerator. You cannot change the mode.

untitled
@
r sldemo_mdlref_counter h |
7 vpper
&)
El N input ocutput
- Nlower
= 4
_ Counter A
|."|_v-|
b4

13 To view the protected model report, right-click the protected-model badge icon on the
CounterA block and select Display Report .
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“i Protected Model report
@ Find: 4F % Match Case

Contents

Summary for sldemo_mdIref counter

Summary

Environment
Interface Report

Environment information for protected model "sldemo_mdlref_counter”

Model version 1.75

Simulink version 8.4

Simulink Coder version 8.7 (R2014b Prerelease) 07-May-2014
Protected model generated on Mon May 19 11:16:13 2014

Platform winbd

Configuration settings at the time of protected model creation: click to open

Supported functionality

Supported functionality for protected model "sldemo_mdlref_counter”

Read-only view support Off
Simulation support On
Code generation support Cn
Target grt
Obfuscation On

Generated code content type Obfuscated source code

Licenses

Licenses required to use protected model "sldemo_mdlref_counter”

Simulink

Related Examples
. “Test the Protected Model” on page 11-20
. “Package a Protected Model” on page 11-23

. “Configure and Run SIL Simulation”
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More About

“Code Generation Support in a Protected Model” on page 11-6
“Protected Model Creation Settings” on page 11-15
“Code Interfaces for SIL and PIL”
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Protected Model Creation Settings

When you create a protected model, in the Create Protected Model dialog box, you can
select which settings you want configured. The settings provide certain functionality
permissions when using a protected model. The functionality choices are:

* Read-only viewing
+  Simulation

* Code Generation

Password-protection is optional. You must have a minimum of four characters.

Create Protected Model: slderno_mdlref_counter @
Description

Create a protected model{.slkp) that allows read-only view, simulation, and code
generation of the model with optional password protection,

Allow user of protected model 1o

("] Open read-only view af model

Simulate Enter passwaord {op... | Enter password {op...
Use generated code Enter password {op... | Enter password (op...
Content type: IDbﬁJacated source code 'I
Create protected model in:  C:iWark | Browse... |

["] Create harness model for protected madel

J Create H Cancel H Help I
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Open Read-Only View of Model

If you want to share a view-only version of your model, this option will allows someone
using the protected model to open a Web view of the model. The contents and block
parameters are viewable in the model Web view.

Simulate

The Simulate check box allows someone to simulate a protected model. When you select
this check box, the Web view is not inherited. To enable the Web view with simulation
functionality, select the Open Read-Only View of Model check box. The Simulate
functionality:

+ Enables protected model Simulation Report.
+  Sets Mode to Accelerator. You can run Normal Mode and Accelerator simulations.

* Displays only binaries and headers.
+  Enables code obfuscation.

Use Generated Code

The Use generated code check box allows simulation and code generation for a
protected model. To generate code, the Simulate check box must also be selected. This
functionality:

*  Enables protected model Simulation Report and Code Generation Report.
+  Sets Mode to enable code generation.
* Enables support for simulation.

*  Supports the Model block if you have an Embedded Coder license and specify an ERT
system target file (ert.tlc) for the model. From the Code interface drop-down list,
select one of the following options:

+ Model reference — Specifies the model reference code interface, which allows
use of the protected model within a model reference hierarchy. Users of the
protected model can generate code from a parent model that contains the protected
model. In addition, users can run Model block SIL/PIL simulations with the
protected model.

+ Top model — Specifies code access through the standalone interface. Users of
the protected model can run Model block SIL/PIL simulations with the protected
model.
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Determines the appearance of the generated code by the Content type list. The
options are:

Binaries

Obfuscated source code (default)

Readable source code, which also includes readable code comments
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Create a Protected Model with Multiple Targets

11-18

You can create a protected model that supports multiple code generation targets. This
example shows how to use command-line functions to create a protected model that
supports code generation for GRT and ERT targets.

1

Load a model and save a local copy. This model is configured for a GRT target.

sldemo_mdlref _counter
save_system(“sldemo_mdlref_counter®,*mdlref_counter.slx®);

Add a required password for modifying a protected model. If you do not add a
password, you are prompted to set a password when you create a modifiable,
protected model.

Simulink.ModelReference.ProtectedModel .setPasswordForModify(. ..
"mdlref_counter”, "password®);

Create a modifiable, protected model with support for code generation.

Simulink_ModelReference.protect("mdlref_counter”,"Mode”", ...
"CodeGeneration®, "Modifiable®,true, "Report”,true);

Get a list of targets that the protected model supports.
st = Simulink.ProtectedModel .getSupportedTargets("mdlref_counter®)
st =
"grt” "sim*
Configure the unprotected model to support an ERT target.

set_param("mdlref_counter®, "SystemTargetFile", "ert.tic");
save_system("mdlref _counter®);

Add support to the protected model for the ERT target. You are prompted for the
modification password.

Simulink.ProtectedModel .addTarget("mdlref_counter®);
Verify that the list of supported targets now includes the ERT target.

st = Simulink.ProtectedModel .getSupportedTargets("mdlref_counter®)
st =

ert” "grt sim



Use a Protected Model with Multiple Targets

Use a Protected Model with Multiple Targets

When using a protected model with multiple targets, prepare your model for code
generation.

1

Get a list of the targets that the protected model supports using the
Simulink.ProtectedModel .getSupportedTargets function.

You can also get this information from the protected model report. To view the
report, on the protected model block, right-click the badge icon. Select Display
Report. The Summary lists the supported targets.

Get the configuration set for your chosen target using the
Simulink.ProtectedModel .getConfigSet function. You can use the
configuration set to verify that the protected model interface is compatible with the
parent model.

Generate code. The build process selects the correct target.
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Test the Protected Model

11-20

To test a protected model that you created, you use the generated harness model and the
procedure described in “Use Protected Model in Simulation”.

You can also compare the output of the protected model to the output of the original
model. Because you are the supplier, both the original and the protected model might
exist on the MATLAB path. In the original model, if the Model block Model name
parameter names the model without providing a suffix, the protected model takes
precedence over the unprotected model. If you need to override this default when testing
the output, in the Model block Model name parameter, specify the file name with the
extension of the unprotected model, .slIx.

To compare the unprotected and protected versions of a Model block, use the Simulation
Data Inspector. This example uses sldemo_mdlref _basic and the protected model,
sldemo_mdlref _counter.slxp, which is created in “Create a Protected Model” on
page 11-10.

1 If it is not already open, open sldemo_mdlref _basic.

2 Enable logging for the output signal of the Model block, CounterA. In the
Configuration Parameters dialog box, in the Data Import/Export pane, select the
Signal logging parameter. Click Apply and OK.

3 Right-click the output signal. From the context menu, select Properties. In the
Signal Properties dialog box, select Log signal data. Click Apply and OK. For more
information, see “Export Signal Data Using Signal Logging”.

4  Right-click the CounterA block. From the context menu, select Block Parameters
(ModelReference). In the Block Parameters dialog box, specify the Model
name parameter with the name of the unprotected model and the extension,
sldemo_mdlref_counter.slx. Click Apply and OK. Repeat this for CounterB
block and CounterC block.

5 In the Simulink Editor, click the Simulation Data Inspector button arrow and
select Send Logged Workspace Data to Data Inspector from the menu.

6 Simulate the model. When the simulation is complete, click the Simulation Data
Inspector button to open the Simulation Data Inspector.

7 In the Simulation Data Inspector, rename the run to indicate that it is for the
unprotected model.

8 In the Simulink Editor, right-click the CounterA block. From the context menu,
select Block Parameters (ModelReference). In the Block Parameters dialog



Test the Protected Model

10

11

box, specify the Model name parameter with the name of the protected model,
sldemo_mdlref _counter.slxp. A shield icon appears on the Model block. Repeat
this for CounterB block and CounterC block.

Simulate the model, which now refers to the protected model. When the simulation is
complete, a new run appears in the Simulation Data Inspector.

In the Simulation Data Inspector, rename the new run to indicate that it is for the
protected model.

In the Simulation Data Inspector, click the Compare tab. From the Baseline

and Compare To lists, select the runs from the unprotected and protected model,
respectively. Click Compare Runs to compare the runs. For more information about
comparing runs, see “Compare Signal Data from Multiple Simulations”.
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Save Base Workspace Definitions

11-22

Referenced models might use object definitions or tunable parameters that are defined in
the MATLAB base workspace. These variables are not saved with the model. When you
protect a model, you must obtain the definitions of required base workspace entities and
ship them with the model.

The following base workspace variables must be saved to a MAT-file:

* Global tunable parameter
*  Global data store

* The following objects used by a signal that connects to a root-level model Inport or
Outport:

Simulink.Signal

+ Simulink.Bus

+ Simulink.Alias
Simulink_NumericType that is an alias

For more information, see “Edit and Manage Workspace Variables Used by Models”.

Before executing the protected model as a part of a third-party model, the receiver of the
protected model must load the MAT-file.



Package a Protected Model

Package a Protected Model

In addition to the protected model file (.sIxp), you might need to include additional files
in the protected model package:

* Harness model file.

* Any required definitions saved in a MAT-file. For more information, see “Save Base
Workspace Definitions” on page 11-22.

* Instructions on how to retrieve the files.
Some ways to deliver the protected model package are:

*  Provide the .slxp file and other supporting files as separate files.
+  Combine the files into a ZIP or other container file.

*  Combine the files using a manifest. For more information, see “Export Files in a
Manifest”.

+  Provide the files in some other standard or proprietary format specified by the
receiver.

Whichever approach you use to deliver a protected model, include information on how
to retrieve the original files. One approach to consider is to use the Simulink Manifest
Tools, as described in “Analyze Model Dependencies”.
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Specify Custom Obfuscator for Protected Model

When creating a protected model, you can specify your own postprocessing

function for files that the protected model creation process generates.

Prior to packaging the protected model files, this function is called by the
Simulink.ModelReference.protect function. You can use this functionality to run
your own custom obfuscator on the generated files by following these steps:

1

Create your postprocessing function. Use this function to call your custom
obfuscator. The function must be on the MATLAB path and accept a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.

In your function, get the files and exported symbol information that your custom
obfuscator requires to process the protected model files. To get the files and
information, access the properties of your function input variable. The variable is
a Simulink.ModelReference.ProtectedModel.HookInfo object with the following
properties:

SourceFiles
+ NonSourceFiles
ExportedSymbols

Pass the protected model file information to your custom obfuscator. The following is
an example of a postprocessing function for custom obfuscation:

function myHook(protectedModel Info)

% Get source file list information.

srcFileList = protectedModel Info.SourceFiles;

disp("### Obfuscating...");

for i=1:length(srcFileList)
disp(["### Obfuscator: Processing " srcFileList{i} "..."1);
% call to custom obfuscator
customObfuscator(srcFileList{i});

end

end

4  Specify your postprocessing function when creating the protected model:

11-24

Simulink_ModelReference.protect("myModel, “"Mode®, "CodeGeneration®,
"CustomPostProcessingHook",
@(protectedModel Info)myHook(protectedModel Info))



Specify Custom Obfuscator for Protected Model

The creator of the protected model also has the option of enabling obfuscation of
simulation target code and generated code through the ‘ObfuscateCode’ option of the
Simulink_ModelReference.protect function. Your custom obfuscator runs only
on the generated code and not on the simulation target code. If both obfuscators are in
use, the custom obfuscator is the last to run on the generated code before the files are
packaged.
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Define Callbacks for Protected Model

11-26

When you create a protected model, you can customize its behavior by defining callbacks.
Callbacks specify code that executes when a protected model user views, simulates, or
generates code for the protected model. A protected model user cannot view or modify a
callback. To create a protected model with callbacks:

1 Define Simulink.ProtectedModel.Callback objects for each callback.

2 To create your protected model, call the Simul ink.ModelReference.protect
function. Use the "Cal Ibacks" option to specify a cell array of callbacks to include
in the protected model.

In this section...

“Creating Callbacks” on page 11-26
“Defining Callback Code” on page 11-27
“Create a Protected Model with Callbacks” on page 11-27

Creating Callbacks

To create and define a protected model callback, create a
Simulink.ProtectedModel.Callback object. Callback objects specify:

* The code to execute for the callback. The code can be a character vector of MATLAB
commands or a script on the MATLAB path.

* The event that triggers the callback. The event can be "PreAccess” or "Build”.

* The protected model functionality that the event applies to. The functionality can
be "CODEGEN", "SIM®, "VIEW", or "AUTO". If you select "AUTO", and the event is
"PreAccess”, the callback applies to each functionality. If you select *AUTO", and
the event is "Bui ld”, the callback applies only to "CODEGEN" functionality. If you do
not select any functionality, the default behavior is *AUTO".

* The option to override the protected model build process. This option applies only to
"CODEGEN" functionality.

You can create only one callback per event and per functionality.



Define Callbacks for Protected Model

Defining Callback Code

You can define the code for a callback by using either a character vector of MATLAB
commands or a script on the MATLAB path. When you write callback code, follow these
guidelines:

+ Callbacks must use MATLAB code (.m or .p).

* The code can include protected model functions or any MATLAB command that does
not require loading the model.

+ Callback code must not call out to external utilities unless those utilities are available
in the protected model user’s environment.

+ Callback code cannot reference the source protected model unless you are using
protected model functions.

You can use the Simul ink.ProtectedModel .getCal IbackInfo function in
callback code to get information on the protected model. The function returns a
Simulink.ProtectedModel.CallbackInfo object that provides the protected model name
and the names of submodels. If the callback is specified for "CODEGEN" functionality
and "Build” event, the object provides the target identifier and model code interface
type (“Top model*” or “Model reference”).

Create a Protected Model with Callbacks

This example creates a protected model with a callback for code generation.
1 On the MATLAB path, create a callback script, pm_cal lback.m, containing:

sl = "Code interface is:

cbinfobj = Simulink.ProtectedModel .getCallbackInfo(...
"sldemo_mdlref _counter®,"Build”, "CODEGEN");

disp([sl cbinfobj.Codelnterface]);

2 Create a callback that uses the script. If the callback code replaces the protected
model build process, set the override option.

pmCallback = Simulink.ProtectedModel .Callback(*Build™, ...
"CODEGEN", "pm_callback.m®);
pmCal Iback.setOverrideBuild(true);

3 Create the protected model and specify the code generation callback.

Simulink_ModelReference.protect("sldemo_mdlref_counter”, ...
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"Mode®, "CodeGeneration®, "Callbacks®,{pmCallback})

4  Build the protected model. In place of the build, the callback displays the code
interface.

rtwbuild("sldemo_mdlref_basic™)

See Also

Simulink.ProtectedModel.Callback | Simulink.ModelReference.protect |
Simulink.ProtectedModel .getCal lbackInfo

More About

. “Protect a Referenced Model” on page 11-2
. “Code Generation Support in a Protected Model” on page 11-6
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Generate Code That Responds to Initialize, Reset, and Terminate

Events

12-2

To generate code from a modeling component that responds to initialize, reset, and
terminate events during execution, use the blocks Initialize Function and
Terminate Function. For information on how to use these blocks, see “Create a
Model to Initialize and Terminate State”. You can use the blocks anywhere in a model
hierarchy.

Examples of when to generate code that responds to initialize, reset, or terminate events
include:

+ Starting and stopping a component.

+ Calculating initial conditions.

+ Saving and restoring state from nonvolatile memory.

+ Generating reset entry-point functions that respond to external events.

Each nonvirtual subsystem and referenced model can have its own set of initialize, reset,
and terminate functions.

The code generator produces initialization and termination code differently than
reset code. For initialization and termination code, the code generator includes your
component initialization and termination code in the default entry-point functions,
model initialize and model terminate. The code generator produces reset code
only if you model reset behavior.

Generate Code for Initialize and Terminate Events

When you generate code for a component that includes Initialize Function and Terminate
Function blocks, the code generator:

* Includes initialize event code with default initialize code in entry-point function
model initialize.

* Includes terminate event code with default terminate code in entry-point function
model_terminate.

Consider the model matlab/help/toolbox/simulink/examples/ex_model01.slx.



Generate Code That Responds to Initialize, Reset, and Terminate Events

K
1T W — >
z-1
Constant Discrete Scope
Integrator

For this model, the code generator produces initialize and terminate entry-point
functions that other code can interface with.

void ex_modelOl_initialize(void)
void ex_model0l1l_terminate(void)

This code appears in the generated file ex_model01.c. The initialize function,
ex_modelOl_initialize, initializes an error status. The terminate function,
ex_model0l1_terminate, requires no code.

void ex_modelOl1_initialize(void)

{
}

void ex_model0l1l_terminate(void)

rtmSetErrorStatus(ex_model01_M, (NULL));

/* (no terminate code required) */

}

Add Initialize Function and Terminate Function blocks to the model (see
matlab/help/toolbox/simulink/examples/ex_modelO1_initterm.slIx). The
Initialize Function block uses the State Writer block to set the initial condition of
a Discrete Integrator block. The Terminate Function block includes a State Reader
block, which reads the state of the Discrete Integrator block.
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Discrete
Tmtegrator
K
. o | E o]
z-1
Constant Dizcrats Scope
Integrator
{_L]l initialize (D terminate
Initialize Function Terminate Function

The Event type parameter of the Event Listener block for the initialize and
terminate functions is set to Initialize and Terminate, respectively. The initialize
function uses the State Writer block to initialize the input value for the Discrete
Integrator block to 10. The terminate function uses the State Reader block to read the
state of the Discrete Integrator block.
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O

Ewvent Listener

10 Diserete
<> Integraitor
Constant State Writer

I

Block Parameters: Event Listener @

Ewvent Listener

Specify event type for subsystem.

Event type: | Initialize -

[ OK ][ Cancel H Help Apply
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Event Listener

Discrete
X
lntegrator 0 Pg

State Reader Terminator

e

Block Parameters: Event Listener @

Event Listener

Specify event type for subsystem.

Event type: [Terminate S

[ OK H Cancel H Help Apply

The code generator includes the event code that it produces for the Initialize
Function and Terminate Function blocks with standard initialize and terminate
code in entry-point functions ex_modelO1_initterm_initialize and
ex_modelOl1_initterm_terminate. This code assumes that support for nonfinite
numbers and MAT-file logging is disabled.

void ex_modelO1_initterm_initialize(void)
{
rtmSetErrorStatus(ex_modelOl_initterm_M, (NULL));

(void) memset(((void *) &ex_modelOl_initterm_B), O,
sizeof(B_ex_model0l_initterm_T));

(void) memset((void *)&ex_model0l_initterm_DW, O,
sizeof(DW_ex_model01_initterm_T));

ex_model01_initterm_DW._Discretelntegrator_DSTATE =
ex_modelO0l1_initterm_P_Constantl Value;
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void ex_modelOl1_initterm_terminate(void)

{

ex_model0l1_initterm_B_read_state =
ex_modelO1_initterm_DW._Discretelnterator DSTATE;

}
The initialization code:

+ Initializes an error status.
* Allocates memory for block I/O and state parameters.

* Assigns the value of the constant input parameter to the state parameter of the
discrete integrator.

The termination code assigns the value of the discrete integrator state parameter to the
block I/0 parameter.

Generate Code for Reset Events

Generate code that responds to a reset event by including an Initialize Function or
Terminate Function block in a modeling component. Configure the block for a reset by
setting the Event type parameter of its Event Listener block to Reset. Also set the
Event name parameter. The default name is reset.

The code generator produces a reset entry-point function only if you model reset
behavior. If a component contains multiple reset specifications, the code that the code
generator produces depends on whether reset functions share an event name. For a given
component hierarchy:

*  For reset functions with unique event names, the code generator produces a separate
entry-point function for each named event. The name of each function is the name of
the corresponding event.

*  For reset functions that share an event name, the code generator aggregates the
reset code into one entry-point function. The code for the reset functions appears
in order, starting with the lowest level (innermost) of the component hierarchy and
ending with the root (outermost). The name of the function is model reset. For more
information, see “Event Names and Code Aggregation” on page 12-9.

Consider the model matlab/help/toolbox/simulink/examples/
ex_modelOl_irt.slx, which includes a Reset Function block derived from an Initialize
Function block.
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Discrete

Tnlegrator
&

1 I i -
z-1
Constant Discrete Scope
Integrator
('} initialize {_) reset () terminate
Initialize Function Reset Function Terminate Fumction

The Event type and Event name parameters of the Event Listener block are set
to Reset and reset, respectively. The function uses the State Writer block to reset the
input value for the Discrete Integrator block to 5.

Event Listener

5 Discrete
futegrator

Constant State Writer

I

Block Parameters: Event Listener

Ewvent Listener

Specify event type for subsystem.

Event type: [Fieset hd

Event name: reset

[ OK ][ Cancel H Help Apply
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The code generator produces reset function ex_model01_irt_reset. The code for the
function appears in the Real-time model section of the model .c file.

void ex_modelOl_irt_reset(void)

{
ex_modelO1_irt_DW.Discretelnterator_DSTATE =

ex_model01_irt_P.Constantl_Value_b;

Event Names and Code Aggregation

Use the Initialize Function and Terminate Function blocks to define multiple
initialize, reset, and terminate functions for a component hierarchy. Define only one
initialize function and one terminate function per hierarchy level. You can define
multiple reset functions for a hierarchy level. The event names that you configure for the
functions at a given level must be unique.

When producing code, the code generator aggregates code for functions that have a given
event name across the entire component hierarchy into one entry-point function. The
code for reset functions appears in order, starting with the lowest level (innermost) of the
component hierarchy and ending with the root (outermost). The code generator uses the
event name to name the function.

For example, the model matlab/help/toolbox/simulink/examples/

ex_model0l1l_shared_irt.slxincludes a subsystem that replicates the initialize,
reset, and terminate functions that are in the parent model.
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Although the model includes multiple copies of the initialize, reset,

and terminate functions, the code generator produces one entry-point

function for reset (ex_model01_shared_irt_reset), one for initialize
(ex_model01_shared_irt_initialize), and one for terminate
(ex_model0l1l_shared_irt_terminate). Within each entry-point function, after listing
code for blocks configured with an initial condition (model_P.block_1C), the code
generator orders code for components, starting with the lowest level of the hierarchy and
ending with the root.
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void ex_model01_shared_irt_reset(void)

{
ex_model01_shared_irt_DW_Sublntegrator2_DSTATE =
ex_model0l1_shared_irt_P.Constantl_Value;
ex_model01_shared_irt_DW.Integrator2 DSTATE =
ex_model01_shared_irt_P.Constant_Value_b;
}

void ex_model0l1_shared_irt_initialize(void)

{
rtmSetErrorStatus(ex_model0l1_shared_irt_M, (NULL));

(void) memset(((void *) &ex_model0l1l_shared_irt _DW), O,
sizeof(DW_ex_model01_shared_irt_T));

ex_model01_shared_irt_DW. Integratorl_ DSTATE =
ex_model01_shared_irt_P.Integratorl_IC;

ex_model01_shared_irt_DW.Sublntegrator2_DSTATE =
ex_model01_shared_irt_P.Constant_Value_j;

ex_model01_shared_irt_DW. Integrator2_DSTATE =
ex_model01_shared_irt_P._Constant_Value;

void ex_model0l1_shared_irt_terminate(void)

{

/* (no terminate code required) */

}

If you rename the event configured for the subsystem reset function to
reset_02, the code generator produces two reset entry-point functions,
ex_model0l1_shared_irt_reset and ex_model01_shared_irt_reset 02.

void ex_model0l_share_irt_reset(void)

{
ex_model01_shared_irt_DW.Discretelntegrator2 DSTATE =

ex_model0l1_shared_irt_P.Constantl_Value_b;
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12-12

}

void ex_modelOl1_share_irt_reset_02(void)
{
ex_model01_shared_irt_DW._Discretelntegrator DSTATE =
ex_model0l1_shared_irt_P.Constantl_Value;

}

Limitations
You cannot generate code from a:

* Harness model—a root model that contains a Model block, which exposes initialize,
reset, or terminate function ports.

*  Model configured for C++ code generation.

Related Examples
. “Create a Model to Initialize and Terminate State”

. “Entry-Point Functions and Scheduling” on page 15-2
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* “Code Generation of Stateflow Blocks” on page 13-2

+  “Generate Reusable Code for Atomic Subcharts” on page 13-6

* “Generate Reusable Code for Unit Testing” on page 13-8

*  “Inline State Functions in Generated Code” on page 13-14

+  “Air-Fuel Ratio Control System with Stateflow Charts” on page 13-17
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Code Generation of Stateflow Blocks

The code generator produces code for Stateflow blocks for rapid prototyping. If you have
an Embedded Coder license, you can generate production code for Stateflow blocks.

Comparison of Code Generation Methods
The following sections compare two ways of generating code.
Code Generation Without Atomic Subcharts

You generate code for the entire model in one file and look through that entire file to find
code for a specific part of the chart.
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E Code Generation Report EI@
2 2 -
Back Forvard /* block I/0 */
(void) memset(((void *) &ex reuse states B), 0,
Contents zizeof (BlockI( ex reuse states)):
Summary /* states (dwork) =/
Subsystem Report (void) memset((void *)é&ex reuse states DWork, O,
Code Interface Report sizeof (D Work ex reuse states)):
Lode Interrace Report o
Traceability Report 221 /* InitializeConditions for Stateflow: '<Root>/Chart’ */
2 ex_reuse states DWork.is active L = OU:
Generated Files 3 ex_reuse states_DWork.is & = 0U:
[-1 Main file ex_reuse states DWork.is active B = 0U:
art main.c ex_reuse_states_DWork.is B = 0U;
- ex_reuse_states_DWork.is_active_cl_ex reuse_states = 0U:
[-1 Medel files ex _reuse states B.yl = 0.0;
ox reuse states.c 2xX reuse states B.y2 = 0.0;
e }
ex reuse states.h
ex reuse states private.h /* Model terminate function */
ex reuse states tvpes.h void ex reuse states terminate (void)
i
[-] Data files /* (no terminate code reguirsd) =/
ex reuse states data.c 3
[+] Utility files (1) i
* File trailer for generated codes
*
* [EOF] N
*
[+
] [ | 2
oK ] [ Help

Code Generation With Atomic Subcharts

You specify code generation parameters so that code for an atomic subchart appears in
a separate file. This method of code generation enables unit testing for a specific part of
a chart. You can avoid searching through unrelated code and focus only on the part that
interests you.
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ﬂ Code Generation Report
VA tion for Stateflow: "<S1>/A" */ i
Back I Forvard I void ex reuse states A during(real T rtu ul, real T *rty vl,
rtDW u_ex reuse states *locallW)
Contents i
/* Durin Chart/a */
Summary

localDW->»isStable = TRUE;
switch (localDW->is_c2_ ex reuse_states) {
case ex_reuse states_IN Neg:
/* During 'Neg': '<S52>:7
if (rtu ul > 0.0) {
/* Transition: '<S2>:5' */
localDW-»isStable = FALSE;

Subsystem Report
Code Interface Report
Traceability Report

Generated Files

[-1 Main file localDW->is_cZ_ex reuse_states = ex reuse_states_IN Pos;
ert main.c B
/* Entry 'Pos': '=83>:€" */
[-1 Model files (*rty y1l) = 1.0;
ex reuse states.c }
break;

ex reuse states.h
ex reuse states private.h
ex reuse states tvpes.h

case ex_reuse_states_IN_ Pos:
/* During "Pos': '<S2>:6' */
if (rtu ul < 0.0) {
/* Transition: '<SZ>:4' */
localDW->isStable = FALSE;
locallW-»is_c2_ex reuse_states = ex_reuse_states_IN Neg;

[-]1 Subsystem files

saturator.c

m

saturator.h

[-] Data files /* Entry 'Neg': '<S8»:7' */
ex reuse states data.c (*rey_yl) = -1.0;
A }
[+] Utility files {1) break:
default:

if (rtu ul > 0.0) {
/* Transition: '<S2>:2' */
localDW->isStable = FALSE;
locallW-»1is_c2_ex reuse_states = ex_reuse_states_IN FPos;

/* Entry 'Pos': '=83>:€" */

(*rty yl) = 1.0;

else {

/* Transition: '<S2>:3' */

localDW-»isStable = FALSE;

localDW-»is_c2_ex reuse_states = eX_reuse_states_IN Neg:

-

/* Entry ‘Neg’: "<S§2>:7' */
(*rty yl) = -1.0;
}

break;

Note: Unreachable Stateflow states are optimized out and are not included in the
generated code.
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For more information, see “Generate Reusable Code for Unit Testing” on page 13-8.
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Generate Reusable Code for Atomic Subcharts

13-6

In this section...

“How to Generate Reusable Code for Linked Atomic Subcharts” on page 13-6
“How to Generate Reusable Code for Unlinked Atomic Subcharts” on page 13-7

How to Generate Reusable Code for Linked Atomic Subcharts

To specify code generation parameters for linked atomic subcharts from the same library:

Open the library model that contains your atomic subchart.
Unlock the library.
Right-click the library chart and select Block Parameters.

A WOWN -

In the dialog box, specify the following parameters:

a On the Main tab, select Treat as atomic unit.

b On the Code Generation tab, set Function packaging to Reusable
function.

¢ Set File name options to User specified.
d For File name, enter the name of the file with no extension.
e Click OK to apply the changes.
5 (OPTIONAL) Customize the generated function names for atomic subcharts:

a Open the Model Configuration Parameters dialog box.
b On the Code Generation pane, set System target file to ert.tlc.

Navigate to the Code Generation > Symbols pane.

0

o.

For Subsystem methods, specify the format of the function names using a
combination of the following tokens:

* $R — root model name

* $F — type of interface function for the atomic subchart

* $N — block name

+ $H — subsystem index

* $M — name-mangling text
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e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for linked atomic
subcharts from the same library.

How to Generate Reusable Code for Unlinked Atomic Subcharts

To specify code generation parameters for an unlinked atomic subchart:

In your chart, right-click the atomic subchart and select Properties.

2 In the dialog box, specify the following parameters:

a Set Code generation function packaging to Reusable function.
b Set Code generation file name options to User specified.
¢ For Code generation file name, enter the name of the file with no extension.
d Click OK to apply the changes.
3 (OPTIONAL) Customize the generated function names for atomic subcharts:

a Open the Model Configuration Parameters dialog box.
b On the Code Generation pane, set System target file to ert.tlc.

(o]

Navigate to the Code Generation > Symbols pane.

o

For Subsystem methods, specify the format of the function names using a
combination of the following tokens:
* $R — root model name
* $F — type of interface function for the atomic subchart
+ $N — block name
+ $H — subsystem index
+ $M — name-mangling text
e Click OK to apply the changes.
When you generate code for your model, a separate file stores the code for the atomic

subchart. For more information, see “Generate Reusable Code for Unit Testing” on page
13-8.
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Generate Reusable Code for Unit Testing

In this section...

“Goal of the Tutorial” on page 13-8

“Convert a State to an Atomic Subchart” on page 13-9
“Specify Code Generation Parameters” on page 13-10
“Generate Code for Only the Atomic Subchart” on page 13-11

Goal of the Tutorial

Assume that you have the following model, and the chart has two states:

e
A o
Sine Wave {2 u:I‘_.fE >
—
Chart Scope
i
v
Sine Wavel
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If’.-':". ¥

i (Pos (Neg '

i y1= ‘ | y1 =

| [CER

I S A b A

N _J

i'E‘_ _______________________________________ 1"'\I
(Pos N (Neg A
%, & b - E

Suppose that you want to generate reusable code so that you can perform unit testing on
state A. You can convert that part of the chart to an atomic subchart and then specify a
separate file to store the generated code.

Convert a State to an Atomic Subchart

To convert state A to an atomic subchart, right-click the state and select Group &
Subchart > Atomic Subchart. State A changes to an atomic subchart:
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Specify Code Generation Parameters

Set Up a Standalone C File for the Atomic Subchart

Open the properties dialog box for A.

Set Code generation function packaging to Reusable function.

Set Code generation file name options to User specified.

For Code generation file name, enter saturator as the name of the file.
Click OK.

A b WN -

Set Up the Code Generation Report

1  Open the Model Configuration Parameters dialog box.
2 Inthe Code Generation pane, set System target file to ert.tlc.
3 In the Code Generation > Report pane, select Create code generation report.

This step automatically selects Open report automatically and Code-to-model
on the All Parameters tab.
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4 Select Model-to-code on the All Parameters tab.
5 Click Apply.

Customize the Generated Function Names

1 In the Model Configuration Parameters dialog box, go to the Code Generation >
Symbols pane.

2 Set Subsystem methods to the format scheme $RENSMSF, where:

$R is the root model name.
«  $Nis the block name.
$M is the mangle token.

*  $F is the type of interface function for the atomic subchart.
For more information, see “Subsystem methods”.

3 Click Apply.

Generate Code for Only the Atomic Subchart

To generate code for your model, press Ctrl+B. In the code generation report that
appears, you see a separate file that contains the generated code for the atomic subchart.

To inspect the code for saturator .c, click the hyperlink in the report to see the
following code:
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ﬂ Code Generation Report EI@

z /* Function for Stateflow: "<S1>/A" */ i

Back I Forvard I void ex reuse states A during(real T rtu ul, real T *rty vl,
rtDW u_ex reuse states *locallW)
Contents i
/* During: Chart/a */
Summary

2 localDW->»isStable = TRUE;
3 switch (localDW->is_c2_ ex reuse_states) {
4 case ex_reuse states_IN Neg:
/* During 'Neg®: */
if (rtu ul > 0.0) {
/* Transition: 51+
localDW-»isStable = FALSE;

Subsystem Report
Code Interface Report
Traceability Report

Generated Files

[-1 Main file localDW->is_cZ_ex reuse_states = ex reuse_states_IN Pos;
ert main.c 20 B
41 /* Entry 'Pos': '=83>:€" */
[-1 Model files (*rty y1) = 1.0:
ex reuse states.c 43 }
44 break;

ex reuse states.h -

ex reuse states orivateh case ex_reuse_states_IN_ Pos:

ex reuse states types.h 47 /* During '"Pos': */
. 48 if (rru ul < 0.0) {
[-1 Subsystem files 49 /* Transition: '<S2>:4' */

saturator.c localDW->isStable = FALSE;

1 locallW-»is_c2_ex reuse_states = ex_reuse_states_IN Neg;

m

saturator.h

[-] Data files 53 /* Entry 'Neg': '<82>:7" =/
ex reuse states data.c 54 (*rey_yl) = -1.0;
R 4
[+] Utility files {1) break:
default:

if (rtu ul > 0.0) {
/* Transition: '<S2>:2' */
localDW->isStable = FALSE;
locallW-»1is_c2_ex reuse_states = ex_reuse_states_IN FPos;

/* Entry 'Pos': '=83>:€" */
(*rty yl) = 1.0;
} else {
/* Transition: '<S2>:3' */
localDW-»isStable = FALSE;
localDW-»is_c2_ex reuse_states = eX_reuse_states_IN Neg:
71 /* Entry 'Neg': '<S§2>:7' */
72 (*rty yl) = -1.0;
73 }
74 break;
75 }
76 }
4 T |

Line 28 shows that the during function generated for the atomic subchart has the
name eX_reuse_states A_during. This name follows the format scheme $RENSMSF
specified for Subsystem methods:
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+ $Ris the root model name, ex_reuse_states.

* $N is the block name, A.

*  $Mis the mangle token, which is empty.

*  $F is the type of interface function for the atomic subchart, during.

Note: The line numbers shown can differ from the numbers that appear in your code
generation report.
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Inline State Functions in Generated Code

13-14

In this section...

“Inlined Generated Code for State Functions” on page 13-14
“How to Set the State Function Inline Option” on page 13-16

“Best Practices for Controlling State Function Inlining” on page 13-16

Inlined Generated Code for State Functions

By default, the code generator uses an internal heuristic to determine whether to inline
generated code for state functions. The heuristic takes into consideration an inlining
threshold. As code grows and shrinks in size, generated code for state functions can be
unpredictable.

If your model includes Stateflow objects and you have rigorous requirements for
traceability between generated code and the corresponding state functions, you can
override the default behavior. Use the state property Function Inline Option to
explicitly force or prevent inlining of state functions.

What Happens When You Force Inlining

If you force inlining for a state, the code generator inlines code for state actions into the
parent function. The parent function contains code for executing the state actions, outer
transitions, and flow charts. It does not include code for empty state actions.

What Happens When You Prevent Inlining

If you prevent inlining for a state, the code generator produces these static functions for
state foo.

Function Description

enter_atomic_foo Marks fo0 active and performs entry
actions.

enter_internal_foo Calls default paths.

inner_default_foo Executes flow charts that originate when
an inner transition and default transition
reach the same junction inside a state.




Inline State Functions in Generated Code

Function

Description

The code generator produces this function
only when the flow chart is complex enough
to exceed the inlining threshold.

In generated code, Stateflow software
calls this function from both the
enter_internal_foo and foo functions.

foo

Checks for valid outer transitions and if
none, performs during actions.

exit_atomic_foo

Performs exit actions and marks foo
inactive.

exit_internal_foo

Performs exit actions of the child substates
and then exits f00.

Suppose the following chart is in model M.

(A l A

If you prevent inlining for state A, the code generator produces this code.

static void M_inner_default_A(void);
static void M_exit_atomic_A(void);
static void M_A(void);

static void M_enter_atomic_A(void);
static void M_enter_internal_A(void);
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How to Set the State Function Inline Option
To set the function inlining property for a state:
1 Right-click inside the state and, from the context menu, select Properties.

The State properties dialog box opens.

2 Inthe Function Inline Option field, select one of these options.

Option Behavior

Inline Forces inlining of state functions into the parent function, as long as
the function is not part of a recursion. See “What Happens When You
Force Inlining” on page 13-14.

Function Prevents inlining of state functions. Generates up to six static
functions for the state. See “What Happens When You Prevent
Inlining” on page 13-14.

Auto Uses internal heuristics to determine whether or not to inline the
state functions.

3 Click Apply.

Best Practices for Controlling State Function Inlining

To Set Function Inline Option Property To

Generate a separate function for each Function for the state and each substate
action of a state and a separate function for
each action of its substates

Generate a separate function for each Function for the state and Inline for each
action of a state, but include code for the substate
associated action of its substates
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Air-Fuel Ratio Control System with Stateflow Charts

Generate code for an air-fuel ratio control system designed with Simulink® and
Stateflow®.

Figures 1, 2, and 3 show relevant portions of the sldemo_fuelsys model, a closed-loop
system containing a plant and controller. The plant validates the controller in simulation
early in the design cycle. In this example, you generate code for the relevant controller
subsystem, "fuel_rate_control". Figure 1 shows the top-level simulation model.

Open sldemo_fuelsys via rtwdemo_fuelsys and compile the diagram to see the signal data
types.
rtwdemo_Tfuelsys

sldemo_fuelsys([1,[1,L[], compile™);
sldemo_fuelsys([1,[],L[], term®);

Fault-Tolerant Fuel Control System
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Open the Dashboard subsystem to simulate any combination of sensor failures. Capyright 1990-2016 The Math\Works, Inc.

Figure 1: Top-level model of the plant and controller
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The air-fuel ratio control system is comprised of Simulink® and Stateflow®. The control
system is the portion of the model for which you generate code.

open_system(“sldemo_fuelsys/fuel_rate _control®);

Fuel Rate Control Subsystem

o
----------- In @Q B sensers single (g/'s)
H est_airflow | est_airflow
N - B Q=) {= 4]
validate_sample_time
¥ 0Z_nomal
o o LEngSeneors | single single ig/s)
; = fb_comection b _comaction fusl_rats I:D
[ fuel_mode fois} fuel rate
H . “' boolean =
es | 2_normsa
t girflow_calc
sld_FueliModes
fuel_mods . #| fuel_mode
controd_logic

fuel_calc

Figure 2: The air-fuel ratio controller subsystem
The control logic is a Stateflow® chart that specifies the different modes of operation.

open_system("sldemo_fuelsys/fuel_rate_control/control_logic®);
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( Fail
DEC DEC DEC DEC
\.
/Fueling_Mode 63
(Fuel_Disabled ™
{es_o=es i} en:
fuel_mode = DISABLED;
Running ;FI'\I ™
Y, [es_i.speed > max_speed]
Low_Emissions /Rich Mixture 2

- Ny .
en: _ (H 1) en:
fuel_mode = LOW; - fuel_mode = RICH;

[in(Speed.normal) & ...
es_|.speed < (max_speed - hys)]

", [in{Fail.One)] Single_Failure [lin{Fail Multi)]

Normal [in{Fail.One)] [in(Fail. Multi)]

enter(Fail. Multi)

[in{Fail.None]]

exit(Fail.Multi)

Figure 3: Air-fuel rate controller logic
Close these windows.

close_system("sldemo_fuelsys/fuel_rate_control/airflow_calc®);
close_system("sldemo_fuelsys/fuel rate control/fuel_calc);
close_system("sldemo_fuelsys/fuel_rate_control/control_logic®);

hDemo . rt=sfroot;hDemo.m=hDemo.rt.find("-isa”, "Simulink.BlockDiagram®);
hDemo.c=hDemo.m.find("-isa", "Stateflow.Chart®,"-and”, "Name", "control_logic");
hDemo.c.visible=false;

close_system("sldemo_fuelsys/fuel _rate_control™);
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Configure and Build the Model with Simulink® Coder™

Simulink® Coder™ generates generic ANSI® C code for Simulink® and Stateflow®
models via the Generic Real-Time (GRT) target. You can configure a model for code
generation programmatically.

rtwconfiguredemo(“sldemo_fuelsys®,"GRT");

For this example, build only the air-fuel ratio control system. Once the code generation
process is complete, an HTML report detailing the generated code is displayed. The main
body of the code is located in fuel_rate_control.c.

rtwbui ld("sldemo_fuelsys/fuel_rate_control®);

### Starting build procedure for model: fuel rate control
### Successful completion of build procedure for model: fuel rate control

Configure and Build the Model with Embedded Coder®

Embedded Coder® generates production ANSI® C/C++ code via the Embedded Real-
Time (ERT) target. You can configure a model for code generation programmatically.

rtwconfiguredemo("sldemo_fuelsys®, "ERT");

Repeat the build process and inspect the generated code. In the Simulink® Coder™
Report, you can navigate to the relevant code segments interactively by using the
Previous and Next buttons. From the chart context menu (right-click the Stateflow®
block), select Code Generation > Navigate to Code. Programmatically, use the
rtwtrace utility.

rtwbui ld("sldemo_fuelsys/fuel_rate_control®);
rtwtrace("sldemo_fuelsys/fuel_rate_control/control_logic*™)

### Starting build procedure for model: fuel rate_control
### Successful completion of build procedure for model: fuel rate control

View the air-fuel ratio control logic in the generated code.

rtwdemodbtype("fuel_rate_control_ert _rtw/fuel _rate_control.c","/* Function for Chart:"

/* Function for Chart: "<S1>/control_logic® */
static void Fueling_Mode(const int32_T *sfEvent)

{
/* During “Fueling_Mode®: "<S3>:21° */
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/* This state interprets the other states in the chart to directly control the fuelil
switch (rtDW._bitsForTIDO.is_Fueling_Mode) {
case IN_Fuel Disabled:
/* During "Fuel_Disabled™: "<S3>:22" */
/* The fuel is completely shut off while in this state. */
switch (rtDW.bitsForTIDO.is_Fuel_Disabled) {
case IN_Overspeed:
/* Inport: "<Root>/sensors®” */
/* During "Overspeed®™: "<S3>:24% */
/* The speed is dangerously high, so shut off the fuel. */

if ((rtDW_bitsForTIDO.is_Speed == IN_normal) && (rtU.sensors.speed <
603.0F)) {
/* Transition: "<S3>:54" */
if (1(rtDW.bitsForTIDO.is_Fail == IN_Multi)) {

/* Transition: "<S3>:55" */
rtDW.bitsForTIDO.is Fuel Disabled = IN_NO ACTIVE CHILD;
rtDW_bitsForTIDO.is_Fueling_Mode = IN_Running;

/* Entry Internal "Running®: "<S3>:23" */
switch (rtbDW.bitsForTIDO.was_Running) {
case IN_Low Emissions:
if (rtbW.bitsForTIDO.is_Running != IN_Low _Emissions) {
rtDW_bitsForTIDO.is_Running = IN_Low_Emissions;
rtDW_bitsForTIDO.was_Running = IN_Low_Emissions;

/* Entry "Low_Emissions®: "<S3>:25" */
rtDW.fuel _mode = LOW;
}

/* Entry Internal "Low_Emissions®: "<S3>:25" */
switch (rtDW.bitsForTIDO.was_Low_Emissions) {
case IN_Normal:
rtDW._bitsForTIDO.is_Low Emissions = IN_Normal;
rtDW._bitsForTIDO.was Low Emissions = IN _Normal;
break;

Close the model and code generation report.
clear hDemo;

rtwdemoclean;
close_system("sldemo_fuelsys®,0);
Related Examples

For related fixed-point examples that use sldemo_fuelsys, see
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* Fixed-point design - “Fixed-Point Fuel Rate Control System”

+ Fixed-point production C/C++ code generation - “Air-Fuel Ratio Control System
with Fixed-Point Data”
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Access Signal, State, and Parameter Data During Execution

As you iteratively develop a model, you capture output signal and state data that
model execution generates. You also tune parameter values during execution to observe
the effect on the outputs. You can then base your design decisions upon analysis of
these outputs. To access this signal, state, and parameter data in a rapid prototyping
environment, you can configure the generated code to store the data in addressable
memory.

By default, optimization settings make the generated code more efficient by eliminating
unnecessary signal storage and inlining the numeric values of block parameters. To
generate code that instead allocates addressable memory for this data, you can disable
the optimizations or specify code generation settings for individual data items.

Explore Example Model
Open the example model rtwdemo_basicsc.

rtwdemo_basicsc

Data configured in the model:

@.—Lp - Parameters: UPPER, LOWER, K1, K2 (Stateflow)
In1_ [mputi > T1Break, T1Data, T2Break, T2Data
- Signals: input1, input2, input3, input4, output
Constant1 ~ Relopi » mode mode - States: X (Delay), mode (DSWrite & Stateflow)
> LogOp DSWrite  Data Store
LOWER Memory

Constant2 RelOp2

n-D T{u)
( : > —»
- = : >_\ >
InZ input2 &
Table1 Gain
n-D T{u) output out1
(3 1
In3 input3 ,I} > E
:In 7 inputd ° Delay Stateflow Chart
Table2 Double-click to configure data
Generate Code Using Generate Code Using Advanced data packaging using
Simulink Coder Embedded Coder Simulink data objects ...
(double-click) (double-click) {double-click)
Caopyright 1924-2015 The MathWorks, Inc.




]4 Data Representation in Simulink Coder

14-4

The model loads numeric MATLAB variables, such as K1, into the base workspace.

In the model, open the block dialog box for the Gain block labeled Gain. The block uses
the variable K1 to set the value of the Gain parameter.

Disable Optimizations

In the model, clear the model configuration parameter Signal storage reuse. When you
clear this optimization and other optimizations such as Eliminate superfluous local
variables (expression folding), the generated code allocates memory for signal lines.
Clearing Signal storage reuse disables most of the other optimizations.

set_param("rtwdemo_basicsc®, "OptimizeBlocklOStorage®, "off")

Set the optimization Configuration Parameters > Optimization > Signals and
Parameters > Default parameter behavior to Tunable. When set to Tunable,
this configuration parameter causes the generated code to allocate memory for block
parameters and workspace variables.

set_param("rtwdemo_basicsc”, "Defaul tParameterBehavior®, "*Tunable®)

Generate code from the model.
rtwbuild(" rtwdemo_basicsc*®)

### Starting build procedure for model: rtwdemo basicsc
### Successful completion of build procedure for model: rtwdemo basicsc

In the code generation report, view the file rtwdemo_basicsc.h. This header file
defines a structure type that contains signal data. The structure contains fields that each
represent a signal line in the model. For example, the output signal of the Gain block
labeled Gain appears as the field Gain.

file = fullfile("rtwdemo_basicsc_grt_rtw", "rtwdemo_basicsc.-h");
rtwdemodbtype(file, " /* Block signals (auto storage) */",...
"B_rtwdemo_basicsc T;",1,1)

/* Block signals (auto storage) */
typedef struct {

real32_T Tablel; /* "<Root>/Tablel® */
real32_T Gain; /* "<Root>/Gain® */
real32_T Delay; /* "<Root>/Delay" */
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real32_T Table2; /* "<Root>/Table2" */
boolean_T RelOpl; /* "<Root>/RelOpl® */
boolean_T RelOp2; /* "<Root>/RelOp2* */
boolean_T LogOp; /* "<Root>/LogOp* */

} B _rtwdemo_basicsc_T;

The file defines a structure type that contains block parameter data. The MATLAB
variable K1 appears as a field of the structure. The other fields of the structure represent
other block parameters and workspace variables from the model, including initial
conditions for signals.

rtwdemodbtype(file, " /* Parameters (auto storage) */",...
*/* Real-time Model Data Structure */°,1,0)

/* Parameters (auto storage) */
struct P_rtwdemo_basicsc_T_ {

real T K2; /> Variable: K2
* Referenced by: "<Root>/Stateflow Chart”
*/
real32_ T LOWER; /* Variable: LOWER
* Referenced by: "<Root>/Constant2*”
*/
real32_T T1Break[11]; /* Variable: T1Break
* Referenced by: "<Root>/Tablel"
*/
real32_T TlData[11]; /* Variable: TlData
* Referenced by: "<Root>/Tablel"
*/
real32_T T2Break[3]; /* Variable: T2Break
* Referenced by: "<Root>/Table2*
*/
real32_T T2Data[9]; /* Variable: T2Data
* Referenced by: "<Root>/Table2*
*/
real32_T UPPER; /* Variable: UPPER
* Referenced by: "<Root>/Constantl”
*/
int8 T K1; /* Variable: K1
* Referenced by: "<Root>/Gain”
*/
real32_T Delay_InitialCondition; /* Computed Parameter: Delay InitialCondition
* Referenced by: "<Root>/Delay”
*/
uint32_T Table2_maxIndex[2]; /* Computed Parameter: Table2_maxIndex

14-5



14 Dota Representation in Simulink Coder

14-6

* Referenced by: "<Root>/Table2*
*/
boolean_T DataStoreMemory_InitialValue;/* Computed Parameter: DataStoreMemory_ Initial
* Referenced by: "<Root>/Data Store Memory*®
*/
}:

View the file rtwdemo_basicsc_data.c. This source file allocates global memory for a
parameter structure and initializes the field values based on the parameter values in the
model.

View the source file rtwdemo_basicsc.c. The code allocates global memory for a
structure variable that contains signal data.

file = fullfile("rtwdemo_basicsc_grt_rtw", "rtwdemo_basicsc.c);
rtwdemodbtype(file, " /* Block signals (auto storage) */",...
"B_rtwdemo_basicsc_T rtwdemo_basicsc_B;",1,1)

/* Block signals (auto storage) */
B rtwdemo basicsc T rtwdemo basicsc B;

The code algorithm in the model step function calculates the signal values. It then
assigns these values to the fields of the signal structure. To perform the calculations, the
algorithm uses the parameter values from the fields of the parameter structure.

Exclude Data ltems from Optimizations

When you want to select code generation optimizations such as Signal storage reuse,
you can preserve individual data items from the optimizations. The generated code then
allocates addressable memory for the items.

Select the optimizations that you previously cleared.

set_param("rtwdemo_basicsc”®, "OptimizeBlocklOStorage®, "on")
set_param("rtwdemo_basicsc”®, "LocalBlockOutputs”®,“on™)
set_param("rtwdemo_basicsc”®, "DefaultParameterBehavior”®, "Inlined")

Right-click the output of the Gain block labeled Gain and select Properties. In the
Signal Properties dialog box, select Test point.

portHandle = get_param("rtwdemo_basicsc/Gain”, "PortHandles®);
portHandle = portHandle.Outport;
set_param(portHandle, "TestPoint®,"on")
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Convert the MATLAB variable K1 to a Simul ink.Parameter object. With parameter
objects, you can create addressable parameters to tune during execution of the generated
code.

K1 = Simulink.Parameter(K1);

Apply a storage class other than Auto to the parameter object K1. For example, use the
storage class SimulinkGlobal to represent the parameter object as a field of the global
parameter structure.

K1.StorageClass = “SimulinkGlobal*;

Generate code from the model.
rtwbui ld(" rtwdemo_basicsc"®)

### Starting build procedure for model: rtwdemo basicsc
##4# Successful completion of build procedure for model: rtwdemo basicsc

In the code generation report, view the file rtwdemo_basicsc.h. The structure that
contains signal data now defines only one field, Gain, which represents the test-pointed
output of the Gain block.

file = fullfile("rtwdemo_basicsc _grt_rtw", "rtwdemo_basicsc.h");
rtwdemodbtype(file, "/* Block signals (auto storage) */",...
"B_rtwdemo_basicsc T;",1,1)

/* Block signals (auto storage) */
typedef struct {

real32_T Gain; /* "<Root>/Gain® */
} B_rtwdemo_basicsc T;

The structure that contains block parameter data defines one field, K1, which represents
the parameter object K1.

rtwdemodbtype(file, "/* Parameters (auto storage) */",...
*/* Real-time Model Data Structure */°,1,0)

/* Parameters (auto storage) */
struct P_rtwdemo_basicsc_T_ {

int8 T K1; /* Variable: K1
* Referenced by: "<Root>/Gain”
*/
}:
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Access Data Through Generated Interfaces

You can configure the generated code to contain extra code and files so that you can
access model data through standardized interfaces. For example, use the C API to log
signal data and tune parameters during execution.

Copy this custom source code into a file named myHandCode . c in your current folder.

#include "myHandHdr.h"

#define paramldx O /* Index of the target parameter,

determined by inspecting the array of structures generated by the C APl1. */
#define sigldx 0 /* Index of the target signal,

determined by inspecting the array of structures generated by the C APl1. */
void tuneFcn(rtwCAPI_ModelMappingInfo *mmi, time T *tPtr)

/* Take action with the parameter value only at

the beginning of simulation and at the 5-second mark. */

if (*tPtr == 0 || *tPtr == 5) {

/* Local variables to store information extracted from
the model mapping information (mmi). */

void** dataAddrMap;

const rtwCAPl_DataTypeMap *dataTypeMap;

const rtwCAPl_ModelParameters *params;

int_T addrldx;

uintl6_T dTypeldx;

uint8 T slDataType;

/* Use built-in C APl macros to extract information. */
dataAddrMap = rtwCAPI_GetDataAddressMap(mmi);

dataTypeMap = rtwCAPI_GetDataTypeMap(mmi);

params = rtwCAPI_GetModelParameters(mmi);

addrldx = rtwCAPI_GetModelParameterAddridx(params,paramldx);
dTypeldx = rtwCAPIl_GetModelParameterDataTypeldx(params,paramldx);
slDataType = rtwCAPIl_GetDataTypeSLId(dataTypeMap, dTypeldx);

/* Handle data types "double® and "int8". */
switch (slDataType) {

case SS _DOUBLE: {
real_T* dataAddress;
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dataAddress = dataAddrMap[addridx];
/* At the 5-second mark, increment the parameter value by 1. */
if (*tPtr == 5) {
(*dataAddress)++;
}
printf("'Parameter value is %f\n", *dataAddress);
break;

}

case SS_INT8: {
int8_T* dataAddress;
dataAddress = dataAddrMap[addridx];
if (*tPtr == 5) {

(*dataAddress)++;
}
printf(""Parameter value is %i\n", *dataAddress);
break;
}
}
}

}

void logFen(rtwCAPI_ModelMappinglnfo *mmi, time_T *tPtr)

{

/* Take action with the signal value only when
the simulation time is an integer value. */
if CtPtr-(Gint_T)*tPtr == 0) {

/* Local variables to store information extracted from
the model mapping information (mmi). */

void** dataAddrMap;

const rtwCAPl_DataTypeMap *dataTypeMap;

const rtwCAPl_Signals *sigs;

int_T addrldx;

uintl6_T dTypeldx;

uint8 T slDataType;

/* Use built-in C APl macros to extract information. */
dataAddrMap = rtwCAPI_GetDataAddressMap(mmi);

dataTypeMap = rtwCAPI_GetDataTypeMap(mmi);

sigs = rtwCAPI_GetSignals(mmi);

addrldx = rtwCAPI_GetSignalAddrldx(sigs,sigldx);

dTypeldx = rtwCAPl_GetSignalDataTypeldx(sigs,sigldx);
slDataType = rtwCAPIl_GetDataTypeSLId(dataTypeMap, dTypeldx);
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/* Handle data types "double® and "single®. */
switch (slDataType) {

case SS_DOUBLE: {
real_T* dataAddress;
dataAddress = dataAddrMap[addridx];
printf(*'Signal value is %f\n", *dataAddress);
break;

}

case SS_SINGLE: {
real32_T* dataAddress;
dataAddress = dataAddrMap[addridx];
printf(*'Signal value is %f\n", *dataAddress);
break;

}

Copy this custom header code into a file named myHandHdr . h in your current folder.

#include <stdio.h>

#include <string.h>

#include <math.h>

/* Include rtw_modelmap.h for definitions of C APl macros. */
#include "rtw_modelmap.h"

#include "builtin_typeid_types.h"

#include "'rtwtypes._h"

void tuneFcn(rtwCAPI_ModelMappingInfo *mmi, time T *tPtr);
void logFen(rtwCAPI_ModelMappinglnfo *mmi, time_T *tPtr);

These files use the C API to access signal and parameter data in the code that you
generate from the example model.

In the model, set Configuration Parameters > Code Generation > Custom Code
> Insert custom C code in generated > Header file to #include "myHandHdr.h".
In the same pane in the Configuration Parameters dialog box, set Additional Build
Information > Source files to myHandCode.c.

set_param("rtwdemo_basicsc”, "CustomHeaderCode*®, "#include "myHandHdr_h"*")
set_param("rtwdemo_basicsc”, "CustomSource*®, "myHandCode.c")
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Select Configuration Parameters > All Parameters > MAT-file Logging. The
generated executable runs only until the simulation stop time (which you set in the
model configuration parameters).

set_param(“rtwdemo_basicsc”, "MatFileLogging®,“on")

Select all of the options under Configuration Parameters > Code Generation >
Interface > Generate C API for.

set_param("rtwdemo_basicsc”®, "RTWCAPIParams”®, "on®)
set_param(“rtwdemo_basicsc”®, "RTWCAPISignals®,"on")
set_param("rtwdemo_basicsc”®, "RTWCAPIStates”, "on")
set_param("rtwdemo_basicsc”®, "RTWCAPIRootlIO", "on")

Load the Custom Code block library.

custcode

These blocks allow you to insert custom

ﬁ code into specific files and functions.

Add a System Outputs block to the model.

add_block("custcode/System Outputs”, "rtwdemo_basicsc/System Outputs®)

In the System Outputs block dialog box, set System Outputs Function Execution
Code to this custom code:
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{

rtwdemo_basicsc_U.input2++;
rtwCAPI_ModelMappinginfo *MMI = &(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);
tuneFecn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

}

In the block dialog box, set System Outputs Function Exit Code to this custom code:

{
rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMaplInfo(rtwdemo_basicsc_M).mmi);

logFcn(MMI, rtmGetTPtr(rtwdemo_basicsc M));
}

Alternatively, to configure the System Outputs block, at the command prompt, use these
commands:

temp.TLCFile = “custcode”;

temp.Location = "System Outputs Function®;

temp._Middle = sprintf(["{\nrtwdemo_basicsc_U. input2++;" ...
“\nrtwCAPI_ModelMappinginfo *MMI = "._.

"&(rtmGetDataMap Info(rtwdemo_basicsc_M).mmi);". ..
“\ntuneFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));\n}"1);
temp.Bottom = sprintfF(["{\nrtwCAPI_ModelMappinginfo *MMI = "__.
"&(rtmGetDataMap Info(rtwdemo_basicsc_M).mmi);". ..

“\nlogFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));\n}"1);
set_param("rtwdemo_basicsc/System Outputs®, "RTWdata®,temp)

Generate code from the model.
rtwbui ld(" rtwdemo_basicsc*®)

### Starting build procedure for model: rtwdemo basicsc
### Successful completion of build procedure for model: rtwdemo basicsc

In the code generation report, view the interface file rtwdemo_basicsc_capi .c. This
file initializes the arrays of structures that you can use to interact with data items
through the C API. For example, in the array of structures rtBlockSignals, the first
structure (index 0) describes the test-pointed output signal of the Gain block in the
model.

file = fullfile("rtwdemo_basicsc_grt_rtw", "rtwdemo_basicsc_capi.c™);

rtwdemodbtype(file, "/* Block output signal information */%,...
*/* Individual block tuning®,1,0)
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/* Block output signal information */
static const rtwCAPl_Signals rtBlockSignals[] = {
/* addrMaplndex, sysNum, blockPath,
* signalName, portNumber, dataTypelndex, dimlndex, fxplndex, sTimelndex
*/
{ 0, 0, TARGET_STRING("'rtwdemo_basicsc/Gain'),
TARGET_STRING(™™), 0, 0, 0, 0, 0 },

{
0, 0, (NULL), (NULL), 0, 0, 0, 0, O

}
¥

The fields of the structure, such as addrMapIndex, indicate indices into other arrays
of structures, such as rtDataAddrMap, that describe the characteristics of the signal.
These characteristics include the address of the signal data (a pointer to the data), the
numeric data type, and the dimensions of the signal.

In the file rtwdemo_basicsc.c, view the code algorithm in the model step function.

The algorithm first executes the custom code that you specified in the System Outputs
block.

file = fullfile("rtwdemo_basicsc_grt_rtw", "rtwdemo_basicsc.c");
rtwdemodbtype(file, "/* user code (Output function Body) */",...
"/* DataStoreWrite: ""<Root>/DSWrite"" incorporates:”,1,0)

/* user code (Output function Body) */

/* System "<Root>" */
{

rtwdemo_basicsc_U. input2++;
rtwCAPI_ModelMappinglinfo *MMI = &(rtmGetDataMaplnfo(rtwdemo_basicsc_M).mmi);
tuneFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

}

This custom code first perturbs the input signal input2 by incrementing the value
of the signal each time the step function executes. The code then uses the built-

in macro rtmGetDataMap Info to extract model mapping information from the
model data structure rtwdemo_basicsc_M. The pointer MM1 points to the extracted
mapping information, which allows the custom functions tuneFcn and logFcn

to access the information contained in the arrays of structures that the C API file
rtwdemo_basicsc_capi .c defines.
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View the custom function tuneFcn in the file myHandCode . c. This function uses the C
API (through the model mapping information mmi) and a pointer to the simulation time
to print the value of the parameter K1 at specific times during code execution. When the
simulation time reaches 5 seconds, the function changes the parameter value in memory.
By using a switch case block, the function can access the parameter data whether the
data type is int8 or double.

View the code algorithm in the model step function again. Near the end of the function,
the algorithm executes the custom code that you specified in the System Outputs block.
This code calls the custom function logFcn.

rtwdemodbtype(file, "/* user code (Output function Trailer) */",...
*/* Matfile logging */7,1,0)

/* user code (Output function Trailer) */

/* System "<Root>" */
{

rtwCAPI_ModelMappinginfo *MMI = &(rtmGetDataMaplInfo(rtwdemo basicsc_M).mmi);
logFen(MMI, rtmGetTPtr(rtwdemo _basicsc M));

}

View the custom function logFcn in the file myHandCode. c. The function uses the C
API to print the value of the test-pointed signal. The function can access the signal data
whether the data type is single or double.

At the command prompt, run the generated executable rtwdemo_bascisc.exe.

system("rtwdemo_basicsc®)
The parameter and signal values appear in the Command Window output.

For more information about data interfaces, including the C API, see “Data Exchange
Interfaces”.

See Also

Simulink.Parameter | Simulink_Signal

Related Examples
. “Default Data Structures in the Generated Code” on page 14-16
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“Configure Block Parameter Tunability for Rapid Prototyping” on page 14-52
“Control Signals and States in Code by Applying Storage Classes” on page 14-120

“Exchange Data Between Generated and External Code Using C API” on page
28-2
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Default Data Structures in the Generated Code

The generated code creates variables to represent model data such as signals, block
parameters, and states. The code generation settings that you choose for a model
determine the default scope of each datum. If the code generator applies a global scope to
a datum, by default the datum appears as a field of a global data structure rather than

a separate global variable. For example, the generated code creates default structures

to contain block output signals, tunable parameters, and constant-valued nontunable
parameters that the code generator cannot inline.

The table shows the most common global data structures in the generated code. The
default name of each structure variable is model_structname. model is the name of the

model. structname is the structure name in the table.

Global data structures generated for a standalone model

Structure Name Data Represented in the Structure

U Data from root Inport blocks

Y Data from root Outport blocks

B Block output signals

ConstB Block outputs that have constant values

P Block parameters

Defaul tP Default parameters in the system

ConstP Constant parameters

DwW Discrete block states

X Continuous block states

XDot Derivatives of continuous states at each time
step

XDis Status of enabled subsystems

ZCV Zero-crossing signals

PrevzCX Previous zero-crossing signal states

Obj Used by ERT C++ code generation to refer to
referenced model objects
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The table shows the most common global data structures generated for atomic
subsystems and referenced models. The default name of each structure variable
is model_structname for referenced models and model_subsystem_structname for
subsystems.

Global data structures generated for subsystems and referenced models

Structure Name Data Represented in the Structure

B Block output signals

ConstB Block outputs that have constant values
P Block parameters

DW Discrete block states

MdIRefDW Discrete block states in referenced model
X Continuous states in model reference
XDis Status of enabled subsystems

ZCV Zero-crossing signals

RTM RT Model structure

If you have an Embedded Coder license, you can control the names of these global
structure variables. For more information, see “Global variables” and “System-generated
identifiers”.

You can exclude data from appearing in these structures by using:

+ Storage classes. For example, you can use storage classes to represent signals,
tunable parameters, and states as individual global variables. For more information,
see “Control Signals and States in Code by Applying Storage Classes” on page
14-120 and “Block Parameter Representation in the Generated Code” on page
14-43.

+ Configuration parameters, such as those on the Optimization > Signals and
Parameters pane in the Configuration Parameters dialog box. You can adjust these
configuration parameters to control the default representation of data. For more
information, see “Optimization Pane: Signals and Parameters”.

See Also

“Combine signal/state structures”
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Related Examples

“Signal Representation in Generated Code” on page 14-109

“Block Parameter Representation in the Generated Code” on page 14-43

“Access Signal, State, and Parameter Data During Execution” on page 14-3
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Use the Real-Time Model Data Structure

The code generator uses the real-time model (RT_MODEL) data structure. This structure
is also referred to as the rtModel data structure. You can access rtModel data by using
a set of macros analogous to the ssSetxxx and ssGetxxx macros that S-functions use to
access SimStruct data, including noninlined S-functions compiled by the code generator.

You need to use the set of macros rtmGetxxx and rtmSetxxx to access the real-

time model data structure. The rtModel is an optimized data structure that replaces
SimStruct as the top level data structure for a model. The rtmGetxxx and rtmSetxxx
macros are used in the generated code as well as from the main.c or main.cpp module.
If you are customizing main.c or main.cpp (either a static file or a generated file), you
need to use rtmGetxxx and rtmSetxxx instead of the ssSetxxx and ssGetxxx macros

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx and
ssGetxxx versions, except that you replace SimStruct S by real-time model data
structure rtM. The following table lists rtmGetxxx and rtmSetxxx macros that are used

in grt_main.c and grt_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax

Description

rtmGetdX(rtm)

Get the derivatives of block continuous states

rtmGetOffsetTimePtr(RT_MDL rtMm)

Return the pointer to vector that stores sample
time offsets of the model associated with rtM

rtmGetNumSampleTimes(RT_MDL rtM)

Get the number of sample times that a block has

rtmGetPerTaskSampleHitsPtr(RT_MDL)

Return a pointer to NumSampleTime x
NumSampleTime matrix

rtmGetRTWExtMode Info(RT_MDL rtM)

Return an external mode information data
structure of the model (used internally for
external mode)

rtmGetRTWLogInfo(RT_MDL)

Return a data structure used by code generator
logging (internal use only)

rtmGetRTWRTMode IMethodsInfo(RT_MDL)

Return a data structure of real-time model
methods information (internal use only)

rtmGetRTWSolverInfo(RT_MDL)

Return data structure containing solver
information of the model (internal use only)
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rtm Macro Syntax

Description

rtmGetSampleHitPtr(RT_MDL)

Return a pointer to Sample Hit flag vector

rtmGetSampleTime(RT_MDL rtM, int TID)

Get task sample time

rtmGetSampleTimePtr(RT_MDL rtM)

Get pointer to a task sample time

rtmGetSampleTimeTaskIDPtr(RT_MDL rtM)

Get pointer to a task ID

rtmGetSimTimeStep(RT_MDL)

Return simulation step type ID
(MINOR_TIME_STEP, MAJOR_TIME_STEP)

rtmGetStepSize(RT_MDL)

Return the fundamental step size of the model

rtmGetT(RT_MDL,t)

Get the current simulation time

rtmSetT(RT_MDL, t)

Set the time of the next sample hit

rtmGetTaskTime(RT_MDL, tid)

Get the current time for the current task

rtmGetTFinal (RT_MDL)

Get the simulation stop time

rtmSetTFinal (RT_MDL,finalT)

Set the simulation stop time

rtmGetTimingData(RT_MDL)

Return a data structure used by timing engine of
the model (internal use only)

rtmGetTPtr(RT_MDL)

Return a pointer to the current time

rtmGetTStart(RT_MDL)

Get the simulation start time

rtmlsContinuousTask(rtm)

Determine whether a task is continuous

rtmlsMajorTimeStep(rtm)

Determine whether the simulation is in a major
step

rtmlsSampleHit(RT_MDL, tid)

Determine whether the sample time is hit

rtmGetErrorStatus(rtm)

Get the current error status

rtmSetErrorStatus(rtm,val)

Set the current error status

rtmGetErrorStatusPointer(rtm)

Return a pointer to the current error status

rtmGetStopRequested(rtm)

Return whether a stop is requested

rtmGetBlocklO(rtm)

Get the block I/0 data structure

rtmSetBlockl0(rtm,val)

Set the block I/0 data structure

rtmGetContStates(rtm)

Get the continuous states data structure

rtmSetContStates(rtm,val)

Set the continuous states data structure
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rtm Macro Syntax

Description

rtmGetDefaul tParam(rtm)

Get the default parameters data structure

rtmSetDefaultParam(rtm,val)

Set the default parameters data structure

rtmGetPrevZCSigState(rtm)

Get the previous zero-crossing signal state data
structure

rtmSetPrevZCSigState(rtm,val)

Set the previous zero-crossing signal state data
structure

rtmGetRootDWork(rtm)

Get the DWork data structure

rtmSetRootDWork(rtm,val)

Set the DWork data structure

rtmGetU(rtm)

Get the root inputs data structure (when root
inputs are passed as part of the model data
structure)

rtmSetU(rtm,val)

Set the root inputs data structure (when root
inputs are passed as part of the model data
structure)

rtmGetY (rtm)

Get the root outputs data structure (when root
outputs are passed as part of the model data
structure)

rtmSetY(rtm,val)

Set the root outputs data structure (when root
outputs are passed as part of the model data
structure)

For additional details on usage, see “SimStruct Macros and Functions Listed by Usage”.

Related Examples

. “SimStruct Macros and Functions Listed by Usage”

. “System Target Files and Code Generation Features” on page 17-18
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Use Enumerated Data in Generated Code

In this section...

“Enumerated Data Types” on page 14-22

“Specify Integer Data Type for Enumeration” on page 14-22

“Customize Enumerated Data Type” on page 14-24

“Control Enumerated Type Implementation in Generated Code” on page 14-28

“Type Casting for Enumerations” on page 14-29

“Enumerated Type Limitations” on page 14-30

Enumerated Data Types

Enumerated data is data that is restricted to a finite set of values. An enumerated data
type is a MATLAB class that defines a set of enumerated values. Each enumerated
value consists of an enumerated name and an underlying integer which the software
uses internally and in generated code. The following is a MATLAB class definition for
an enumerated data type named BasicColors, which is used in the examples in this
section.

classdef BasicColors < Simulink. IntEnumType
enumeration
Red(0)
Yellow(1)
Blue(2)
end
end

For basic information about enumerated data types and their use in Simulink models,
see “Use Enumerated Data in Simulink Models”. For information about enumerated data
types in Stateflow charts, see “Define Enumerated Data in a Chart”.

Specify Integer Data Type for Enumeration

When you specify a data type for your enumeration, you can:

+  Control the size of enumerated data types in the generated code by specifying a
superclass.

* Reduce RAM/ROM usage.
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*  Improve code portability.

* Improve integration with legacy code.

You can specify any of these integer data types:

+ Int8

* uint8
+ Intlé
* uintl6
+ Int32

+ Simulink. IntEnumType. Specify values in the range of the signed integer for your
hardware platform.

Use a Class Definition in a MATLAB File

To specify an integer data type size, derive your enumeration class from the integer data
type.

classdef Colors < int8
enumeration
Red(0)
Green(1)
Blue(2)
end
end

The code generator generates this code:

typedef int8_T Colors;

#define Red ((Colors)0)
#define Green ((Colors)l)
#define Blue ((Colors)2)

Use the Function Simul ink.definelntEnumType

To specify an integer data type size, specify the name-value pair StorageType as the
integer data type.

Simulink._.definelntEnumType(“Colors”,{"Red","Green”,"Blue"}, ...
[0;1;2], StorageType”,"int8")
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The code generator generates this code:

typedef int8_T Colors;

#define Red

((Colors)0)

#define Green ((Colors)l)

#define Blue

((Colors)2)

Customize Enumerated Data Type

When you generate code from a model that uses enumerated data, you can implement
these static methods to customize the behavior of the type during simulation and in

generated code:

+ getDefaultValue — Specifies the default value of the enumerated data type.

+ getDescription — Specifies a description of the enumerated data type.

+ getHeaderFile — Specifies a header file where the type is defined for generated

code.

+ getDataScope — Specifies whether generated code exports or imports the
enumerated data type definition to or from a separate header file.

+ addClassNameToEnumNames — Specifies whether the class name becomes a prefix in
generated code.

The first of these methods, getDefaultValue, is relevant to both simulation and
code generation, and is described in “Specify a Default Enumerated Value” in the
Simulink documentation. The other methods are relevant only to code generation. To
customize the behavior of an enumerated type, include a version of the method in the
methods(Static) section of the enumeration class definition. If you do not want to
customize the type, omit the methods(Static) section. The table summarizes the
methods and the data to supply for each one.

Static Method Purpose Default Value Without | Custom Return Value
Implementing Method
getDefaultValue Specifies the default |First member A character vector
enumeration member |specified in the containing the name
for the class. enumeration of an enumeration
definition member in the class

(see “Instantiate
Enumerations”).
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Static Method

Purpose

Default Value Without
Implementing Method

Custom Return Value

getDescription

Specifies a description
of the enumeration
class.

A character vector
containing the
description of the type.

getHeaderFile

Specifies the

name of a header

file. The method
getDataScope
determines the
significance of the file.

A character vector
containing the name
of the header file
that defines the
enumerated type.

By default, the
generated #include
directive uses the
preprocessor delimiter
" instead of < and

>. To generate the
directive #include
<myTypes.h>,
specify the custom
return value as
"<myTypes.h>".

getDataScope

Specifies whether
generated code
exports or imports

the definition of the
enumerated data
type. Use the method
getHeaderFile to
specify the generated
or included header file
that defines the type.

“Auto”

One of: "Auto”,
"Exported”, or
"Imported-”.

addClassNameToEnumName

Specifies whether to
prefix the class name
in generated code.

false

true or false.
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Specify a Description

To specify a description for an enumerated data type, include this method in the
methods(Static) section of the enumeration class:

function retVal = getDescription()

% GETDESCRIPTION Optional description of the data type.
retval = 'description';

end

Substitute a MATLAB character vector for description. The generated code that
defines the enumerated type includes the specified description.

Import Type Definition in Generated Code

To prevent generated code from defining an enumerated data type, which allows
you to provide the definition in an external file, include these methods in the
methods(Static) section of the enumeration class:

function retVal = getHeaderFile()
% GETHEADERFILE Specifies the file that defines this type in generated code.
% The method getDataScope determines the significance of the specified file.
retVal = "imported_enum_type.h";

end

function retVal = getDataScope()
% GETDATASCOPE Specifies whether generated code imports or exports this type.
% Return one of:
% “Auto”: define type in model_types.h, or import if header file specified
% "Exported”: define type in a generated header file
% "Imported”: import type definition from specified header file
% 1IF¥ you do not define this method, DataScope is "Auto” by default.
retVal = "Imported”;
end

Instead of defining the type in model types.h, which is the default behavior, generated

code imports the definition from the specified header file using a #include statement
like:

#include "imported_enum_type.h"

Generating code does not create the imported header file. You must provide the header
file, using the file name specified by the method getHeaderFile, that defines the
enumerated data type.

Export Type Definition in Generated Code

To generate a separate header file that defines an enumerated data type, include these
methods in the methods(Static) section of the enumeration class:
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function retVal = getDataScope()
% GETDATASCOPE Specifies whether generated code imports or exports this type.
% Return one of:
% “Auto”: define type in model_types.h, or import if header file specified
% "Exported”: define type in a generated header file
% "Imported”: import type definition from specified header file
% IFf you do not define this method, DataScope is "Auto” by default.
retVal = "Exported”;
end

function retVal = getHeaderFile()
% GETHEADERFILE Specifies the file that defines this type in generated code.
% The method getDataScope determines the significance of the specified file.
retVal = “exported_enum_type.h";

end

Generated code exports the enumerated type definition to the generated header file
exported_enum_type.h.

Add Prefixes To Class Names

By default, enumerated values in generated code have the same names that they have in
the enumeration class definition. Alternatively, your code can prefix every enumerated
value in an enumeration class with the name of the class. You can use this technique

to prevent identifier conflicts or to improve the readability of the code. To specify class
name prefixing, include this method in the methods(Static) section of an enumeration
class:

function retVal = addClassNameToEnumNames()
% ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name
% as a prefix to enumeration member names in generated code.
% Return true or false.
% If you do not define this method, no prefix is added.
retval = true;
end

Specify the return value as true to enable class name prefixing or as false to suppress
prefixing. If you specify true, each enumerated value in the class appears in generated
code as EnumTypeName_EnumName. For the example enumeration class BasicColors in
“Enumerated Data Types” on page 14-22, the data type definition in generated code
might look like this:

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
BasicColors_Red = 0, /* Default value */
BasicColors_Yellow = 1,
BasicColors_Blue = 2,

} BasicColors;
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#endif

The enumeration class name BasicColors appears as a prefix for each of the
enumerated names.

Control Enumerated Type Implementation in Generated Code

Suppose that you define an enumerated type BasicColors. You can specify that the
generated code implement the type definition using:

* An enum block. The native integer type of your hardware is the underlying integer
type for the enumeration members.

+ A typedeT statement and a series of #define macros. The typedeT statement bases
the enumerated type name on a specific integer data type, such as int8. The macros
associate the enumeration members with the underlying integer values.

Implement Enumerated Type Using enum Block
To implement the type definition using an enum block:

* In Simulink, define the enumerated type using a classdef block in a script file.
Derive the enumeration from the type Simulink. IntEnumType.

+ Alternatively, use the function Simul ink.definelntEnumType. Do not specify the
property StorageType.

When you generate code, the type definition appears in an enum block.

#ifndef DEFINED TYPEDEF_ FOR BasicColors_
#define DEFINED TYPEDEF_ FOR BasicColors_

typedef enum {
Red = 0, /* Default value */
Yellow,
Blue,

} BasicColors;

#endif

Implement Enumerated Type Using a Specific Integer Type

To implement the type definition using a typedef statement and #define macros:
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* In Simulink, define the enumerated type using a classdef block in a script file.
Derive the enumeration from a specific integer type such as int8.

+ Alternatively, use the function Simul ink.definelntEnumType. Specify the
property StorageType using a specific integer type such as int8.

When you generate code, the type definition appears as a typedef statement and a
series of #define macros.

#ifndef DEFINED TYPEDEF_ FOR BasicColors_
#define DEFINED TYPEDEF_FOR BasicColors_

typedef int8_T BasicColors;

#define Red ((BasicColors)0) /* Default value */
#define Yellow ((BasicColors)l)

#define Blue ((BasicColors)2)

#endif

By default, the generated file model_ types.h contains enumerated type definitions.

Type Casting for Enumerations

Safe Casting

A Simulink Data Type Conversion block accepts a signal of integer type. The block
converts the input to one of the underlying values of an enumerated type.

If the input value does not match any of the underlying values of the enumerated type
values, Simulink inserts a safe cast to replace the input value with the enumerated type
default value.

Enable and Disable Safe Casting

You can enable or disable safe casting for enumerations during code generation for a
Simulink Data Type Conversion block or a Stateflow block.

To control safe casting, enable or disable the Saturate on integer overflow block
parameter. The parameter works as follows:

+ Enabled: Simulink replaces a nonmatching input value with the default value of the
enumerated values during simulation. The software generates a safe cast function
during code generation.
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* Disabled: For a nonmatching input value, Simulink generates an error during
simulation. The software omits the safe cast function during code generation. In this
case, the code is more efficient. However, the code may be more vulnerable to run-
time errors.

Safe Cast Function in Generated Code

This example shows how the safe cast function int32_T
ETO8 safe cast to BasicColors for the enumeration BasicColors appears in
generated code when generated for 32-bit hardware.

static Int32_T ET08_safe_cast_to_BasicColors(int32_T input)

{
int32_T output;
/* Initialize output value to default value for BasicColors (Red) */
output = 0;
if ((input >= 0) && (input <= 2)) {
/* Set output value to input value if it is a member of BasicColors */
output = input;
}

return output;

}

Through this function, the enumerated type’s default value is used if the input value does
not match one of underlying values of the enumerated type’s values.

If the block’s Saturate on integer overflow parameter is disabled, this function does
not appear in generated code.

Enumerated Type Limitations

*  Generated code does not support logging enumerated data.

See Also

enumeration | Simulink.data.getEnumTypelnfo |
Simulink.definelntEnumType

Related Examples
. “Use Enumerated Data in Simulink Models”

. “Simulink Enumerations”
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Data Stores in Generated Code

In this section...
“About Data Stores” on page 14-31
“Generate Code for Data Store Memory Blocks” on page 14-31

“Storage Classes for Data Store Memory Blocks” on page 14-32
“Data Store Buffering in Generated Code” on page 14-34

About Data Stores

A data store contains data that is accessible in a model hierarchy at or below the level
in which the data store is defined. Data stores can allow subsystems and referenced
models to share data without having to use I/O ports to pass the data from level to level.
See “Data Stores with Data Store Memory Blocks” for information about data stores in
Simulink. This section provides additional information about data store code generation.

Generate Code for Data Store Memory Blocks

To control the code generated for a Data Store Memory block, apply a storage class to
the data store. You can associate a Data Store Memory block with a signal object that
you store in a workspace or data dictionary, and control code generation for the block by
applying the storage class to the object:

1 Instantiate the desired signal object.

2 Set the object's Coder Info.StorageClass property to indicate the desired storage
class.

3 Open the block dialog box for the Data Store Memory block that you want to
associate with the signal object.

Enter the name of the signal object in the Data store name field.

Select Data store name must resolve to Simulink signal object.

Do not set the storage class field to